The Physical and Numerical Mesoscale Modeling of Cold Wire Drawing Process of Hardly Deformable Biocompatible Magnesium Alloys / Fizyczne I Numeryczne Modelowanie W Mezo Skali Procesu Ciągnienia Na Zimno Trudno Odkształcalnych Stopów Magnezu O Podwyższonej Biozgodności

Open access

The problem of determination of the cold low diameter wire (diameter less than 0.1mm) drawing process parameters for hardly deformable biocompatible magnesium alloys by using the mathematical mesoscale model is described in the paper. The originality of the considered alloys (MgCa0.8, A×30) is the intergranular fracture mechanism associated with small strains (0.07-0.09). In previous authors works it was proven that the material state directly before appearance of the microcracks is in the optimal state from the point of view of the recovery of the plasticity by annealing. The forecasting of this material state in drawing process requires the development of the model of intergranular fracture initiation and using this model in two cases:

- modeling of the in-situ tests, what allows calibrating and validating of the model;

- modeling of the drawing process, what allows optimizing of the drawing parameters.

A new model of the microcracks initiation in mesoscale using the boundary element method is proposed. The in-situ tests, which allowed observing the microstructure evolution during deformation, are used for the calibration and validation purpose. The model was implemented into self-developed FE software Drawing2d, which is dedicated to the drawing process. The results of mesoscale simulation were verified by the experimental drawing process of 0.07 mm diameter wires according to developed technology. It was shown by analysis of microstructure that the model allows forecasting the microcracks initiation during the wire drawing process.

[1] B. Heublein, R. Rohde, M. Niemeyer, V. Kaese, W. Hartung, C. Röcken, G. Haus­dorf, A. Haverich, Annual Symposium, Am. J. Cardiol., (1999).

[2] H. Haferkamp, V. Kaese, M. Niemeyer, K. Phillip, T. Phan-Tan, B. Heublein, R. Ro­hde, Mat.-wiss. u. Werkstofftech 32, 116-120 (2001).

[3] M. Thomann, Ch. Krause, D. Bormann, N. von der Hoh, H. Windhagen, A. Meyer-Lindenberg, Mat.-wiss. u. Werkstofftech. 40, 82-87, (2009).

[4] A. Milenin, D.J. Byrska, O. Grydin, M. Schaper, Comput. Meth. Mater. Sci. 10, 61-68 (2010).

[5] P. Kustra, A. Milenin, M. Schaper, O. Grydin, Comput. Meth. Mater. Sci. 9, 207-214 (2009).

[6] A. Milenin, D. Byrska, O. Gridin, Comput Struct 89, 1038-1049 (2011), doi:10.1016/j.compstruc.2011.01.003

[7] J.-M. Seitz, D. Utermohlen, E. Wulf, C. Klose, F.-W. Bach, Adv. Eng. Mater. 13(12), 1087-1095, (2011).

[8] A. Milenin, P. Kustra, J.-M. Seitz, Fr.-W. Bach, D. Bormann, Wire Ass. Int. Inc. Wire & Cable Technical Symposium, 61-70 (2010).

[9] A. Milenin, P. Kustra, Proc. 11th Int. Conf. on Computational Plasticity, COMPLAS XI, 275-286 (2011).

[10] A. Milenin, D.J. Byrska-Wójcik, O. Gry­din, M. Schaper, Proc. 14th Int. Conf. on Metal Forming, Metal Forming 2012, Steel Res. Int. (spec. ed.), 863-866 (2012).

[11] A. Milenin, P. Kustra, D.J. Byrska-Wójcik, Comput. Meth. Mater. Sci., in press (2013).

[12] A. Milenin, Russian Metallurgy (Metally) 2, 64-71 (1997).

[13] A. Milenin, Hut.-Wiad. Hut. 72, 100-104 (2005).

[14] Ł. Rauch, K. Bzowski, Comput. Meth. Mater. Sci. 11, 350-356 (2011).

[15] S.L. Crouch, A.M. Starfield, Boundary element methods in solid mechanics, GEORGE ALLEN & UN­WIN London, Boston, Sydney (1983).

[16] Y.N. Rabotnov, Creep Problems in Structural Mem­bers, North-Holland, 1969.

[17] O. Diard, S. Leclercq, G. Rousselier, G. Cailletaud, Comp. Mater. Sci. 18, 73-84 (2002).

[18] K. Yoshida, Steel Grips 2, 199-202, (2004).

[19] A. Milenin, P. Kustra, Archives of Metallurgy and Materials 58, 1, (2013), in press.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 89 4
PDF Downloads 40 39 3