Analysis of Plastic Strain Localization on the Basis of Strain and Temperature Fields / Analiza Lokalizacji Odkształcenia Plastycznego Na Podstawie Pola Odkształceń I Pola Temperatury

Open access

In the present paper the onset of plastic strain localization was determined using two independent methods based on strain and temperature field analysis. The strain field was obtained from markers displacement recorded using visible light camera. In the same time, on the other side of the specimen, the temperature field was determined by means of infrared camera. The objective of this work was to specify the conditions when the non-uniform temperature distribution can be properly used as the indicator of plastic strain localization. In order to attain the objective an analysis of strain and temperature fields for different deformation rates were performed. It has been shown, that for given experimental conditions, the displacement rate 2000 mm/min is a threshold, above which the non-uniform temperature distribution can be used as the indicator of plastic strain localization.

[1] A.K. Ghosh, Metall. Trans. 5, 1607-1616 (1974).

[2] P.V. Makarov, Theor. Appl. Fract. Mec. 33, 23-30 (2000).

[3] B. Wattrisse, A. Chrysochoos, J.-M. Muracciole, M. Némoz-Gaillard, Eur. J. Mech. A-Solid. 20, 189-211 (2001).

[4] W.Y. Chien, J. Pan, S.C. Tang, Int. J. Plasticity 20, 1956-1981 (2004).

[5] F. Lagattu, J. Brillaud, M.-C. Lafarie-Frenot, Mater. Charact. 53, 17-28 (2004).

[6] J.J. Lopez Cela, I. Munoz Diaz, Comput. Struct. 83, 1824-1833 (2005).

[7] T.S. Byun, N. Hashimoto, Nucl. Eng. Technol. 38, 619-638 (2006).

[8] B. Guelorget, M. Francois, C. Vial-Edwards, G. Montay, L. Daniel, J. Lu, Mat. Sci. Eng. A-Struct. 415, 234-241 (2006).

[9] A. Holger, Int. J. Plasticity 23, 789-840 (2007).

[10] G. Montay, M. Francois, M. Tourneix, B. Guelorget, C. Vial-Edwards, I. Lira, Opt. Laser. Eng. 45, 222-228 (2007).

[11] S.-H. Tung, M.-H. Shih, J.-C. Kuo, Opt. Laser. Eng. 48, 636-641 (2010).

[12] A. Chrysochoos, H. Louche, Int. J. Eng. Sci. 38, 1759-1788 (2000).

[13] H. Louche, A. Chrysochoos, Mater. Sci. Eng. A-Struct. 307, 15-22 (2001).

[14] B. Wattrisse, J.-M. Muracciole, A. Chrysochoos, Int. J. Therm. Sci. 41, 422-427 (2002).

[15] W. Oliferuk, M. Maj, Mater. Sci. Eng. A-Struct. 387-389, 218-221 (2004).

[16] B. Yang, P.K. Liaw, M. Morrison, C.T. Liu, R.A. Buchanan, J.Y. Huang, R.C. Kuo, J.G. Huang, D.E. Fielden, Intermetallics 13, 419-428 (2005).

[17] W. Oliferuk, M. Maj, Mater. Sci. Eng. A-Struct. 462, 363-366 (2007).

[18] W. Oliferuk, M. Maj, Arch. Metall. Mater. 52, 2, 250-256 (2007).

[19] B. Berthel, A. Chrysochoos, B. Wat­trisse, A. Galtier, Exp. Mech. 48, 79-90 (2008).

[20] A. Rusinek, J.R. Klepaczko, Mater. Design 30, 35-48 (2009).

[21] O.A. Plekhov, O.B. Naimark, J. Appl. Mech. Tech. Phy. 50, 127-136 (2009).

[22] S. Dumoulin, H. Louche, O.S. Hopper­stad, T. Břrvik, Eur. J. Mech. A-Solid. 29, 461-474 (2010).

[23] W. Oliferuk, M. Maj, R. Litwinko, L. Ur­bański, Eur. J. Mech. A-Solid. 35, 111-118 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 133 11
PDF Downloads 66 65 11