Oscillations and Self-Organization Phenomena During Electrodeposition of Silver-Indium Alloys. Experimental Study

Open access

Oscillations and Self-Organization Phenomena During Electrodeposition of Silver-Indium Alloys. Experimental Study

The relationship between galvanostatic oscillations and formation of spatio-temporal structures on the electrode surface during electrodeposition of silver-indium alloy coatings were established. The influence of the natural and forced convection onto the structure formation were investigated. A relationship between Ag to In metal ratio in the electrolyte and the current density has been established in slow-stirred electrolyte, which allows the reproducible formation and observation of the self-organization periodic structures also in stirred electrolytes. The diffusion coefficients of the reacting silver and indium species are experimentally determined. It was shown, that the formation of the spatio-temporal structures in Ag-In alloy electrodeposits follows a very complicated reaction mechanism, typical for non-linear dynamic processes.

J.J. Tyson, J.P. Keener, Singular perturbation theory of traveling waves in excitable media (a review), Physica D 32, 327-361 (1988).

M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851-1112 (1993).

L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, Spatial resonances and superposition patterns in a reaction-diffusion model with interacting turing modes, Phys Rev Lett 88, 3031-3034 (2002).

F.I. Ataullakhanov, V.I. Zarnitsyna, A.Y. Kondratovich, V.I. Sarbash, E.S. Lobanova, A new class of stopping self-sustained waves: A factor determining the spatial dynamics of blood coagulation, Uspekh. Fizich. Nauk 172, 689-690 (2002).

R.T. Liu, S.S. Liaw, P.K. Maini, Two-stage Turing model for generating pigment patterns on the leopard and the jaguar, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74 (2006).

I.R. Epstein, J.A. Pojman, O. Steinbock, Introduction: Self-organization in nonequilibrium chemical systems, Chaos 16, 037101-1-037101-6 (2006).

M. Orlik, Self-organization in nonlinear dynamical systems and its relation to the materials science, J. Solid State Electrochem. 13, 245-261 (2009).

A.S. Mikhailov, K. Showalter, Physic Reports 425, 79-194 (2006).

E. Raub, A. Schall, Silber-Indium-Legierungen, Z. Metallkd. 30, 149-151 (1938).

T.S. Dobrovolska, I. Krastev, A. Zielonka, Effect of the electrolyte composition on in and Ag-In alloy electrodeposition from cyanide electrolytes, J. Appl. Electrochem. 35, 1245-1251 (2005).

T.S. Dobrovolska, L. Veleva, I. Krastev, A. Zielonka, Composition and structure of silver-indium alloy coatings electrodeposited from cyanide electrolytes, J. Electrochem. Soc 152, C137-C142 (2005).

T.S. Dobrovolska, V.D. Jovic, B.M. Jovic, I. Krastev, Phase identification in electrodeposited Ag-In alloys by ALSV technique, J. Electroanal. Chem 611, 232-240 (2007).

T.S. Dobrovolska, G. Beck, I. Krastev, A. Zielonka, Phase composition of electrodeposited silver-indium alloys, J. Solid State Electrochem. 12, 1461-1467 (2008).

I. Krastev, T. Dobrovolska, R. Kowalik, P. Żabiński, A. Zielonka, Properties of silver-indium alloys electrodeposited from cyanide electrolytes, Electrochim. Acta 54, 2515-2521 (2009).

J. Wojtowicz, Oscillatory Behaviour in Electrochemical Systems. in: J.O.M. Bockris and B.E. Conway (Eds.) in Modern Aspects of Electrochemistry, Butherworth, pp. 47, London 1973.

L.I. Kadaner, V.M. Fedchenko, I.B. Ermolov, Itogi Nauki i techniki, Elektrokhimiya, 1989.

M.T.M. Koper, Oscillations and complex dynamical bifurcations in electrochemical systems in John Wiley & Sons Inc. Advances in Chemical Physics 92, 161-298 (1996).

G. Ertl, Pattern formation at electrode surfaces, Electrochim. Acta 43, 2743-2750 (1998).

K. Krischer, Principles of temporal and spatial pattern formation in electrochemical systems, Mod. Asp. Electrochem. 32, 1-142 (1999).

K. Krischer, Spontaneous formation of spatiotemporal patterns at the electrode. J. Electroanal. Chem 501, 1-21 (2001).

P. Strasser, M. Eiswirth, M.T.M. Koper, Mechanistic classification of electrochemical oscillators - An operational experimental strategy, J. Electroanal. Chem. 478, 50-66 (1999).

I. Kristev, M. Nikolova, Structural effects during the electrodeposition of silver-antimony alloys from ferrocyanide-thiocyanate electrolytes, J. Appl. Electrochem. 16, 875-878 (1986).

I. Krastev, M.E. Baumgartner, C. Raub, Stromoszillationen bei der galvanischen Abscheidung, Untersuchungen zur Silber-Antimon-Legierungsabscheidung, Teil 2 Metalloberflache 46, 115-120 (1992).

I. Krastev, M.T.M. Koper, Pattern formation during the electrodeposition of a silver-antimony alloy, Physica A 213, 199-208 (1995).

S. Nakabayashi, I. Krastev, R. Aogaki, K. Inokuma, Electrochemical instability of Ag/Sb co-deposition coupled with a magnetohydrodynamic flow, Chem. Phys. Lett. 294, 204-208 (1998).

M. Saitou, Y. Fukuoka, An experimental study on stripe pattern formation of Ag-Sb electrodeposits, J. Phys. Chem. B 108, 5380-5385 (2004).

Y. Nagamine, N. Kurono, M. Hara, Electric stability of spatiotemporal stripe patterns formed by silver and antimony co-electrodeposition under the constant current mode, Thin Solid Films 460, 87-93 (2004).

Y. Nagamine, O. Haruta, M. Hara, Surface morphology of spatiotemporal stripe patterns formed by Ag/Sb co-electrodeposition,. Surf Sci 575, 17-28 (2005).

B.B. Damaskin, O.A. Petrij, Elektrokhimiya, Vysshaya shkola, Moskva, 1989.

T.S. Dobrovolska, I. Krastev, A. Zielonka, Electrodeposition of silver-indium alloy from cyanide-hydroxide electrolytes, Russ. J. Electrochem. 44, 676-682 (2008).

G. Baltrunas, The mechanism of electrode process in the system silver/silver cyanide complexes, Electrochim. Acta 48, 3659-3664 (2003).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 94 6
PDF Downloads 38 37 5