Open Access

Fundamental Limitations of the Decay of Generalized Energy in Controlled (Discrete–Time) Nonlinear Systems Subject to State and Input Constraints

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
New Perspectives in Nonlinear and Intelligent Control (In Honor of Alexander P. Kurdyukov) (special section, pp. 629-712), Julio B. Clempner, Enso Ikonen, Alexander P. Kurdyukov (Eds.)

Cite

This paper is devoted to the analysis of fundamental limitations regarding closed-loop control performance of discrete-time nonlinear systems subject to hard constraints (which are nonlinear in state and manipulated input variables). The control performance for the problem of interest is quantified by the decline (decay) of the generalized energy of the controlled system. The paper develops (upper and lower) barriers bounding the decay of the system’s generalized energy, which can be achieved over a set of asymptotically stabilizing feedback laws. The corresponding problem is treated without the loss of generality, resulting in a theoretical framework that provides a solid basis for practical implementations. To enhance understanding, the main results are illustrated in a simple example.

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics