The Phase–Space Approach to time Evolution of Quantum States in Confined Systems: the Spectral Split–Operator Method

Open access

Abstract

Using the phase space approach, we consider the quantum dynamics of a wave packet in an isolated confined system with three different potential energy profiles. We solve the Moyal equation of motion for the Wigner function with the highly efficient spectral split-operator method. The main aim of this study is to compare the accuracy of the employed algorithm through analysis of the total energy expectation value, in terms of deviation from its exact value. This comparison is performed for the second and fourth order factorizations of the time evolution operator.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baker G.A. (1958). Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space Physical Review 109(6): 2198–2206 DOI: 10.1103/PhysRev.109.2198.

  • Balazs N.L. and Jennings B.K. (1984). Wigner’s function and other distribution functions on Mock phase spaces Physics Reports 104(6): 347–391 DOI: 10.1016/0370-1573(84)90151-0.

  • Bayen F. Flato M. Fronsdal C. Lichnerowicz A. and Sternheimer D. (1977). Quantum mechanics as a deformation of classical mechanics Letters in Mathematical Physics 1(6): 521–530 DOI: 10.1007/BF00399745.

  • Bayen F. Flato M. Fronsdal C. Lichnerowicz A. and Sternheimer D. (1978a). Deformation theory and quantization. I: Deformation of symplectic structures Annals of Physics 111(1): 61–110 DOI: 10.1016/0003-4916(78)90224-5.

  • Bayen F. Flato M. Fronsdal C. Lichnerowicz A. and Sternheimer D. (1978b). Deformation theory and quantization. II: Physical applications Annals of Physics 111(1): 111–151 DOI: 10.1016/0003-4916(78)90225-7.

  • Benedict M.G. and Czirják A. (1999). Wigner functions squeezing properties and slow decoherence of a mesoscopic superposition of two-level atoms Physical Review A 60(5): 4034–4044 DOI: 10.1103/PhysRevA.60.4034.

  • Berkovitz L.D. (1974). Optimal Control Theory Springer-Verlag New York NY.

  • Błaszak M. and Domański Z. (2010). Phase space quantum mechanics Annals of Physics 327(2): 167–211 DOI: 10.1016/j.aop.2011.09.006.

  • Bondar D.I. Cabrera R. Zhdanov D.V. and Rabitz H.A. (2013). Wigner phase-space distribution as a wave function Physical Review A 88(5): 052108–1–052108–6 DOI: 10.1103/PhysRevA.88.052108.

  • Castellani L. (2000). Non-commutative geometry and physics: A review of selected recent results Classical and Quantum Gravity 17(17): 3377–3401 DOI: 10.1088/0264-9381/17/17/301.

  • Chin S.A. (1997). Symplectic integrators from composite operator factorizations Physics Letters A 226(6): 344–348 DOI: 10.1016/S0375-9601(97)00003-0.

  • Chin S.A. and Chen C.R. (2002). Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials The Journal of Chemical Physics 117(4): 1409–1415 DOI: 10.1063/1.1485725.

  • Ciurla M. Adamowski J. Szafran B. and Bednarek S. (2002). Modelling of confinement potentials in quantum dots Physica E: Low-dimensional Systems and Nanostructures 15(4): 261–268 DOI: 10.1016/S1386-9477(02)00572-6.

  • Curtright T.L. and Zachos C.K. (2012). Quantum mechanics in phase space Asia-Pacific Physics Newsletter 1(1): 37–46 DOI: 10.1142/S2251158X12000069.

  • Dattoli G. Giannessi L. Ottaviani P.L. and Torre A. (1995). Split-operator technique and solution of Liouville propagation equations Physical Review E: Statistical Physics Plasmas Fluids and Related Interdisciplinary Topics 51(1): 821–824 DOI: 10.1103/PhysRevE.51.821.

  • Delius G.W. and Hüffmann A. (1996). On quantum Lie algebras and quantum root systems Journal of Physics A: Mathematical and General 29(8): 1703–1722 DOI: 10.1088/0305-4470/29/8/018.

  • Feit M.D. Fleck J.A. and Steiger A. (1982). Solution of the Schrödinger equation by a spectral method Journal of Computational Physics 47(3): 412–433 DOI: 10.1016/0021-9991(82)90091-2.

  • Gómez E.A. Thirumuruganandham S.P. and Santana A. (2014). Split-operator technique for propagating phase space functions: Exploring chaotic dissipative and relativistic dynamics Computer Physics Communications 185(1): 136–143 DOI: 10.1016/j.cpc.2013.08.025.

  • Hiley B.J. (2015). On the relationship between the Wigner–Moyal approach and the quantum operator algebra of von Neumann Journal of Computational Electronics 14(4): 869–878 DOI: 10.1007/s10825-015-0728-7.

  • Hillery M. O’Connell R.F. Scully M.O. and Wigner E.P. (1984). Distribution functions in physics: Fundamentals Physics Reports 106(3): 121–167 DOI: 10.1016/0370-1573(84)90160-1.

  • Isar A. and Scheid W. (2004). Deformation of quantum oscillator and of its interaction with environment Physica A: Statistical Mechanics and Its Applications 335(1–2): 79–93 DOI: 10.1016/j.physa.2003.12.017.

  • Kaczor U. Klimas B. Szydłowski D. Wołoszyn M. and Spisak B. (2016). Phase-space description of the coherent state dynamics in a small one-dimensional system Open Physics 14(1): 354–359 DOI: 10.1515/phys-2016-0036.

  • Kenfack A. (2016). Comment on Nonclassicality indicator for the real phase-space distribution functions Physical Review A 93(3): 036101-1–036101-2 DOI: 10.1103/PhysRevA.93.036101.

  • Kenfack A. and ˙Zyczkowski K. (2004). Negativity of the Wigner function as an indicator of non-classicality Journal of Optics B Quantum and Semiclassical Optics 6(10): 396–404 DOI: 10.1088/1464-4266/6/10/003.

  • Khademi S. Sadeghi P. and Nasiri S. (2016). Reply to Comment on Nonclassicality indicator for the real phase-space distribution functions Physical Review A 93(3): 036102-1–036102-2 DOI: 10.1103/PhysRevA.93.036102.

  • Kołaczek D. Spisak B.J. and Wołoszyn M. (2018). Phase-space approach to time evolution of quantum states in confined systems. The spectral split-operator method in P. Kulczycki et al. (Eds) Contemporary Computational Science AGH-UST Press Cracow p. 5.

  • Kołaczek D. Spisak B.J. and Wołoszyn M. (2020). Phase-space approach to time evolution of quantum states in confined systems. The spectral split-operator method in P. Kulczycki et al. (Eds) Information Technology Systems Research and Computational Physics Springer Cham pp. 307–320.

  • Kubo R. (1964). Wigner representation of quantum operators and its applications to electrons in a magnetic field Journal of the Physical Society of Japan 19(11): 2127–2139 DOI: 10.1143/JPSJ.19.2127.

  • Lechner G. (2011). Deformations of quantum field theories and integrable models Communications in Mathematical Physics 312(1): 265–302 DOI: 10.1007/s00220-011-1390-y.

  • Lee H.-W. (1995). Theory and application of the quantum phase-space distribution functions Physics Reports 259(3): 147–211 DOI: 10.1016/0370-1573(95)00007-4.

  • Leung B. and Prodan E. (2013). A non-commutative formula for the isotropic magneto-electric response Journal of Physics A: Mathematical and Theoretical 46(15): 085205-1–085205-14 DOI: 10.1088/1751-8113/46/8/085205.

  • Luenberger D.G. (1979). Introduction to Dynamic Systems Theory Models and Applications John Wiley & Sons Inc. New York NY.

  • Ozorio de Almeida A.M. (1998). The Weyl representation in classical and quantum mechanics Physics Reports 295(6): 265–342 DOI: 10.1016/S0370-1573(97)00070-7.

  • Polderman J.W. and Willems J.C. (1998). Introduction to Mathematical Systems Theory. A Behavioral Approach Springer-Verlag New York NY.

  • Pool J.C.T. (1966). Mathematical aspects of the Weyl correspondence Journal of Mathematical Physics 7(1): 66–76 DOI: 10.1063/1.1704817.

  • Sadeghi P. Khademi S. and Nasiri S. (2010). Nonclassicality indicator for the real phase-space distribution functions Physical Review A 83(1): 012102-1–012102-8 DOI: 10.1103/PhysRevA.82.012102.

  • Sontag E.D. (1990). Mathematical Control Theory. Deterministic Finite Dimensional Systems Springer-Verlag New York NY.

  • Tatarskiĭ V.I. (1983). The Wigner representation of quantum mechanics Soviet Physics Uspekhi 26(4): 311–327 DOI: 10.1070/PU1983v026n04ABEH004345.

  • Ter Haar D. (1961). Theory and applications of the density matrix Reports on Progress in Physics 24(1): 304–362 DOI: 10.1088/0034-4885/24/1/307.

  • Torres-Vega G. and Frederick J.H. (1982). Numerical method for the propagation of quantum-mechanical wave functions in phase space Physical Review Letters 67(19): 2601–2604 DOI: 10.1103/PhysRevLett.67.2601.

  • Walker J.A. (1980). Dynamical Systems and Evolution Equations. Theory and Applications Plenum Press New York NY.

  • Wigner E. (1932). On the quantum correction for thermodynamic equilibrium Physical Review 40(5): 749–759 DOI: 10.1103/PhysRev.40.749.

  • Xue Y. and Prodan E. (2012). The noncommutative Kubo formula: Applications to transport in disordered topological insulators with and without magnetic fields Physical Review. B: Condensed Matter 86(15): 155445-1–155445-17 DOI: 10.1103/PhysRevB.86.155445.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 5
PDF Downloads 151 151 23