The Effect of Elastic and Inelastic Scattering on Electronic Transport in Open Systems

Open access

Abstract

The purpose of this study is to apply the distribution function formalism to the problem of electronic transport in open systems, and to numerically solve the kinetic equation with a dissipation term. This term is modeled within the relaxation time approximation and contains two parts, corresponding to elastic or inelastic processes. The collision operator is approximated as a sum of the semi-classical energy dissipation term and the momentum relaxation term, which randomizes the momentum but does not change the energy. As a result, the distribution of charge carriers changes due to the dissipation processes, which has a profound impact on the electronic transport through the simulated region discussed in terms of the current–voltage characteristics and their modification caused by the scattering. Measurements of the current–voltage characteristics for titanium dioxide thin layers are also presented, and compared with the results of numerical calculations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bak T. Nowotny J. and Nowotny M.K. (2006). Defect disorder of titanium dioxide Journal of Physical Chemistry B 110(43): 21560–21567.

  • Ben Abdallah N. Degond P. and Genieys S. (1996). An energy-transport model for semiconductors derived from the Boltzmann equation Journal of Statistical Physics 84(1): 205–231.

  • Cabrera R. Bondar D.I. Jacobs K. and Rabitz H.A. (2015). Efficient method to generate time evolution of the Wigner function for open quantum systems Physical Review A 92(4): 042122.

  • Caldeira A.O. and Leggett A.J. (1981). Influence of dissipation on quantum tunneling in macroscopic systems Physical Review Letters 46(4): 211–214.

  • Chatterjee K. Roadcap J.R. and Singh S. (2014). A new Green’s function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry Journal of Computational Physics 276: 479–485.

  • Chruściński D. and Pascazio S. (2017). A brief history of the GKLS equation Open Systems and Information Dynamics 24(3): 1740001.

  • Costolanski A.S. and Kelley C.T. (2010). Efficient solution of the Wigner–Poisson equations for modeling resonant tunneling diodes IEEE Transactions on Nanotechnology 9(6): 708–715.

  • Danielewicz P. (1984). Quantum theory of nonequilibrium processes I Annals of Physics 152(2): 239–304.

  • Di Ventra M. (2008). Electrical Transport in Nanoscale Systems Cambridge University Press Cambridge.

  • Ferry D.K. Goodnick S.M. and Bird J. (2009). Transport in Nanostructures Cambridge University Press Cambridge.

  • Frensley W.R. (1990). Boundary conditions for open quantum systems driven far from equilibrium Reviews of Modern Physics 62(3): 745–791.

  • Fujita S. (1966). Introduction to Non-Equilibrium Quantum Statistical Mechanics W.B. Saunders Company Philadelphia PA.

  • Gómez E.A. Thirumuruganandham S.P. and Santana A. (2014). Split-operator technique for propagating phase space functions: Exploring chaotic dissipative and relativistic dynamics Computer Physics Communications 185(1): 136–143.

  • Hong S. and Jang J. (2018). Transient simulation of semiconductor devices using a deterministic Boltzmann equation solver IEEE Journal of the Electron Devices Society 6: 156–163.

  • Hong S.-M. Pham A.-T. and Jungemann C. (2011). Deterministic Solvers for the Boltzmann Transport Equation Springer Science & Business Media Vienna.

  • Jacoboni C. Bertoni A. Bordone P. and Brunetti R. (2001). Wigner-function formulation for quantum transport in semiconductors: Theory and Monte Carlo approach Mathematics and Computers in Simulation 55(1–3): 67–78.

  • Jacoboni C. Poli P. and Rota L. (1988). A new Monte Carlo technique for the solution of the Boltzmann transport equation Solid-State Electronics 31(3): 523–526.

  • Jonasson O. and Knezevic I. (2015). Dissipative transport in superlattices within the Wigner function formalism Journal of Computational Electronics 14(4): 879–887.

  • Kim K.-Y. (2007). A discrete formulation of the Wigner transport equation Journal of Applied Physics 102(11): 113705.

  • Kim K.-Y. and Kim S. (2015). Effect of uncertainty principle on the Wigner function-based simulation of quantum transport Solid-State Electronics 111: 22–26.

  • Kohn W. and Luttinger J.M. (1957). Quantum theory of electrical transport phenomena Physical Review 108(3): 590–611.

  • Kulczycki P. Kacprzyk J. Kóczy L. Mesiar R. and Wisniewski R. (2019). Information Technology Systems Research and Computational Physics Springer Cham (in press).

  • Kulczycki P. Kowalski P. and Łukasik S. (Eds) (2018). Contemporary Computational Science AGH-UST Press Cracow p. 4.

  • Leaf B. (1968). Weyl transformation and the classical limit of quantum mechanics Journal of Mathematical Physics 9(1): 65–72.

  • Lee H.-W. (1995). Theory and application of the quantum phase-space distribution functions Physics Reports 259(3): 147–211.

  • Lifshits I.M. Gredeskul S.A. and Pastur L.A. (1987). Introduction to the Theory of Disordered Systems John Wiley and Sons Inc. New York NY.

  • Luttinger J.M. and Kohn W. (1958). Quantum theory of electrical transport phenomena II Physical Review 109(6): 1892–1909.

  • Mahan G.D. (2000). Many Particle Physics Kluwer Academic Plenum Publishers New York NY.

  • Muscato O. and Wagner W. (2016). A class of stochastic algorithms for the Wigner equation SIAM Journal on Scientific Computing 38(3): A1483–A1507.

  • Nedjalkov M. Kosina H. Selberherr S. Ringhofer C. and Ferry D.K. (2004). Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices Physical Review B 70(11): 115319.

  • Nedjalkov M. Selberherr S. Ferry D. Vasileska D. Dollfus P. Querlioz D. Dimov I. and Schwaha P. (2013). Physical scales in the Wigner–Boltzmann equation Annals of Physics 328: 220–237.

  • Nedjalkov M. and Vitanov P. (1989). Iteration approach for solving the Boltzmann equation with the Monte Carlo method Solid-State Electronics 32(10): 893–896.

  • Nowotny J. Radecka M. and Rekas M. (1997). Semiconducting properties of undoped TiO2Journal of Physics and Chemistry of Solids 58(6): 927–937.

  • Querlioz D. and Dollfus P. (2010). The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence ISTE Ltd. and John Wiley and Sons Inc. New York NY.

  • Rammer J. (2007). Quantum Field Theory of Non-Equilibrium States Cambridge University Press Cambridge.

  • Schieve W.C. and Horwitz L.P. (2009). Quantum Statistical Mechanics Cambridge University Press Cambridge.

  • Schleich W.P. (2001). Quantum Optics in Phase Space John Wiley and Sons Inc. New York NY.

  • Schulz D. and Mahmood A. (2016). Approximation of a phase space operator for the numerical solution of the Wigner equation IEEE Journal of Quantum Electronics 52(2): 1–9.

  • Sellier J. Amoroso S. Nedjalkov M. Selberherr S. Asenov A. and Dimov I. (2014). Electron dynamics in nanoscale transistors by means of Wigner and Boltzmann approaches Physica A: Statistical Mechanics and Its Applications 398: 194–198.

  • Sellier J. and Dimov I. (2014). The Wigner–Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant Computer Physics Communications 185(10): 2427–2435.

  • Spisak B.J. Wołoszyn M. and Szydłowski D. (2015). Dynamical localisation of conduction electrons in one-dimensional disordered systems Journal of Computational Electronics 14(4): 916–921.

  • Stashans A. Lunell S. and Grimes R.W. (1996). Theoretical study of perfect and defective TiO2 crystals Journal of Physics and Chemistry of Solids 57(9): 1293–1301.

  • Tatarskiĭ V.I. (1983). The Wigner representation of quantum mechanics Soviet Physics Uspekhi 26(4): 311–327.

  • Ter Haar D. (1961). Theory and applications of the density matrix Reports on Progress in Physics 24(1): 304–362.

  • Thomann A. and Borz A. (2017). Stability and accuracy of a pseudospectral scheme for the Wigner function equation Numerical Methods for Partial Differential Equations 33(1): 62–87.

  • Wigner E. (1932). On the quantum correction for thermodynamic equilibrium Physical Review 40(5): 749–759.

  • Zurek W.H. (2003). Decoherence einselection and the quantum origins of the classical Reviews of Modern Physics 75(3): 715–775.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 115 9
PDF Downloads 170 170 8