Ontology–based access to temporal data with Ontop: A framework proposal

Elem Güzel Kalayci 1 , Sebastian Brandt 2 , Diego Calvanese 1 , Vladislav Ryzhikov 3 , Guohui Xiao 1 , and Michael Zakharyaschev 3 , 4
  • 1 KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
  • 2 , 81739, München, Germany
  • 3 Department of Computer Science and Information Systems, Birkbeck, University of London, WC1E 7HX, London
  • 4 National Research University Higher School of Economics, , 125319, Moscow

Abstract

Predictive analysis gradually gains importance in industry. For instance, service engineers at Siemens diagnostic centres unveil hidden knowledge in huge amounts of historical sensor data and use it to improve the predictive systems analysing live data. Currently, the analysis is usually done using data-dependent rules that are specific to individual sensors and equipment. This dependence poses significant challenges in rule authoring, reuse, and maintenance by engineers. One solution to this problem is to employ ontology-based data access (OBDA), which provides a conceptual view of data via an ontology. However, classical OBDA systems do not support access to temporal data and reasoning over it. To address this issue, we propose a framework for temporal OBDA. In this framework, we use extended mapping languages to extract information about temporal events in the RDF format, classical ontology and rule languages to reflect static information, as well as a temporal rule language to describe events. We also propose a SPARQL-based query language for retrieving temporal information and, finally, an architecture of system implementation extending the state-of-the-art OBDA platform Ontop.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abiteboul, S., Hull, R. and Vianu, V. (1995). Foundations of Databases, Addison Wesley Publ. Co., Boston, MA.

  • Allen, J.F. (1983). Maintaining knowledge about temporal intervals, Communications of the ACM26(11): 832–843.

  • Alur, R. and Henzinger, T.A. (1993). Real-time logics: Complexity and expressiveness, Information and Computation104(1): 35–77.

  • Anicic, D., Fodor, P., Rudolph, S. and Stojanovic, N. (2011). EP-SPARQL: A unified language for event processing and stream reasoning, Proceedings of the 20th International World Wide Web Conference (WWW), Hyderabad, India, pp. 635–644.

  • Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F. and Zakharyaschev, M. (2015a). First-order rewritability of temporal ontology-mediated queries, Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, pp. 2706–2712.

  • Artale, A., Kontchakov, R., Ryzhikov, V. and Zakharyaschev, M. (2015b). Tractable interval temporal propositional and description logics, Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), Austin, TX, USA, pp. 1417–1423.

  • Artale, A., Kontchakov, R., Wolter, F. and Zakharyaschev, M. (2013). Temporal description logic for ontology-based data access, Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, pp. 711–717.

  • Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A. and Thost, V. (2017). Metric temporal description logics with interval-rigid names, in C. Dixon and M. Finger (Eds.), Proceedings of the 11th International Symposium on Frontiers of Combining Systems (FroCoS), Lecture Notes in Computer Science, Vol. 10483, Springer, Berlin/Heidelberg, pp. 60–76.

  • Baader, F., Borgwardt, S. and Lippmann, M. (2013). Temporalizing ontology-based data access, Proceedings of the 24th International Conference on Automated Deduction (CADE), Lake Placid, NY, USA, pp. 330–344.

  • Baader, F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-Schneider, P.F. (Eds.) (2007). The Description Logic Handbook: Theory, Implementation and Applications, 2nd Edn., Cambridge University Press, Cambridge.

  • Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D. and Grossniklaus, M. (2010). C-SPARQL: A continuous query language for RDF data streams, International Journal of Semantic Computing4(1): 3–25.

  • Beck, H., Dao-Tran, M., Eiter, T. and Fink, M. (2015). LARS: A logic-based framework for analyzing reasoning over streams, Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), Austin, TX, USA, pp. 1431–1438.

  • Borgwardt, S., Lippmann, M. and Thost, V. (2013). Temporal query answering in the description logic DL-Lite, in P. Fontaine et al. (Eds.), Proceedings of the 9th International Symposium on Frontiers of Combining Systems (FroCoS), Lecture Notes in Computer Science, Vol. 8152, Springer, Berlin/Heidelberg, pp. 165–180.

  • Brandt, S., Güzel Kalayci, E., Kontchakov, R., Ryzhikov, V., Xiao, G. and Zakharyaschev, M. (2017a). Ontology-based data access with a Horn fragment of metric temporal logic, Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), San Francisco, CA, USA, pp. 1070–1076.

  • Brandt, S., Güzel Kalayci, E., Ryzhikov, V., Xiao, G. and Zakharyaschev, M. (2017b). A framework for temporal ontology-based data access: A proposal, in M. Kirikova et al. (Eds.), New Trends in Databases and Information Systems, Communications in Computer and Information Science, Vol. 767, Springer, Berlin/Heidelberg, pp. 161–173.

  • Brandt, S., Güzel Kalayci, E., Ryzhikov, V., Xiao, G. and Zakharyaschev, M. (2018). Querying log data with metric temporal logic, Journal of Artificial Intelligence Research62: 829–877.

  • Calbimonte, J.-P., Jeung, H., Corcho, Ó. and Aberer, K. (2012). Enabling query technologies for the semantic sensor web, International Journal on Semantic Web and Information Systems8(1): 43–63.

  • Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-Muro, M. and Xiao, G. (2017). Ontop: Answering SPARQL queries over relational databases, Semantic Web Journal8(3): 471–487.

  • Calvanese, D. and De Giacomo, G. (2003). Expressive description logics, in F. Baader et al. (Eds.), The Description Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, Cambridge, pp. 178–218.

  • Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. (2007). Tractable reasoning and efficient query answering in description logics: The DL-Lite family, Journal of Automated Reasoning39(3): 385–429.

  • Cox, S. and Little, C. (2017). Time ontology in OWL, W3C Recommendation, W3C, https://www.w3.org/TR/owl-time/.

  • Das, S., Sundara, S. and Cyganiak, R. (2012). R2RML: RDB to RDF mapping language, W3C Recommendation, W3C, http://www.w3.org/TR/r2rml/.

  • Dignös, A., Böhlen, M.H., Gamper, J. and Jensen, C.S. (2016). Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries, ACM Transactions on Database Systems41(4): 26:1–26:46.

  • El Raheb, K., Mailis, T., Ryzhikov, V., Papapetrou, N. and Ioannidis, Y. E. (2017). BalOnSe: Temporal aspects of dance movement and its ontological representation, in E. Blomqvist et al. (Eds.), Proceedings of the 14th Extended Semantic Web Conference (ESWC), Vol. 10250, Springer, Berlin/Heidelberg, pp. 49–64.

  • Grandi, F. (2010). T-SPARQL: A SQL2-like temporal query language for RDF, Local Proceedings of the 14th East-European Conference on Advances in Databases and Information Systems (ADBIS), Novi Sad, Serbia, pp. 21–30.

  • Gutiérrez-Basulto, V., Jung, J.C. and Kontchakov, R. (2016a). Temporalized EL ontologies for accessing temporal data: Complexity of atomic queries, Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, NY, USA.

  • Gutiérrez-Basulto, V., Jung, J.C. and Ozaki, A. (2016b). On metric temporal description logics, in G.A. Kaminka et al. (Eds.), Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI), Frontiers in Artificial Intelligence and Applications, Vol. 285, IOS Press, Amsterdam, pp. 837–845.

  • Gutiérrez-Basulto, V. and Klarman, S. (2012). Towards a unifying approach to representing and querying temporal data in description logics, in M. Krötzsch and U. Straccia (Eds.), Proceedings of the 6th International Conference on Web Reasoning and Rule Systems (RR), Lecture Notes in Computer Science, Vol. 7497 Springer, Berlin/Heidelberg, pp. 90–105.

  • Gutiérrez, C., Hurtado, C.A. and Vaisman, A.A. (2005). Temporal RDF, in A. Gómez Pérez and J. Euzenat (Eds.), Proceedings of the 2nd European Semantic Web Conference (ESWC), Lecture Notes in Computer Science, Vol. 3532, Springer, Berlin/Heidelberg, pp. 93–107.

  • Halpern, J.Y. and Shoham, Y. (1991). A propositional modal logic of time intervals, Journal of the ACM38(4): 935–962.

  • Kharlamov, E., Brandt, S., Jiménez-Ruiz, E., Kotidis, Y., Lamparter, S., Mailis, T., Neuenstadt, C., Özçep, Ö. L., Pinkel, C., Svingos, C., Zheleznyakov, D., Horrocks, I., Ioannidis, Y.E. and Möller, R. (2016). Ontology-based integration of streaming and static relational data with Optique, Proceedings of the 2016 International Conference on Management of Data (SIGMOD), San Francisco, CA, USA, pp. 2109–2112.

  • Kharlamov, E., Mailis, T., Mehdi, G., Neuenstadt, C., Özçep, Ö. L., Roshchin, M., Solomakhina, N., Soylu, A., Svingos, C., Brandt, S., Giese, M., Ioannidis, Y.E., Lamparter, S., Möller, R., Kotidis, Y. and Waaler, A. (2017). Semantic access to streaming and static data at Siemens, Journal of Web Semantics44: 54–74.

  • Klarman, S. and Meyer, T. (2014). Querying temporal databases via OWL 2 QL, in R. Kontchakov and M.-L. Mugnier (Eds.), Proceedings of the 8th International Conference on Web Reasoning and Rule Systems, Lecture Notes in Computer Science, Vol. 8741, Springer, Berlin/Heidelberg, pp. 92–107.

  • Kontchakov, R., Pandolfo, L., Pulina, L., Ryzhikov, V. and Zakharyaschev, M. (2016). Temporal and spatial OBDA with many-dimensional Halpern–Shoham logic, Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, NY, USA, pp. 1160–1166.

  • Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G. and Zakharyaschev, M. (2014). Answering SPARQL queries over databases under OWL 2 QL entailment regime, in P. Mika et al. (Eds.), Proceedings of the 13th International Semantic Web Conference (ISWC), Lecture Notes in Computer Science, Vol. 8796, Springer, Berlin/Heidelberg, pp. 552–567.

  • Koymans, R. (1990). Specifying real-time properties with Metric Temporal Logic, Real-Time Systems2(4): 255–299.

  • Möller, R., Özçep, Ö. L., Neuenstadt, C., Zheleznyakov, D. and Kharlamov, E. (2013). A semantics for temporal and stream-based query answering in an OBDA context, Optique Project Deliverable Deliverable D5.1, FP7-318338.

  • Özçep, Ö.L., Möller, R. and Neuenstadt, C. (2014). A stream-temporal query language for ontology based data access, in C. Lutz and M. Thielscher (Eds.), Proceedings of the 37th Annual German Conference on AI (KI), Lecture Notes in Computer Science, Vol. 8736, Springer, Berlin/Heidelberg, pp. 183–194.

  • Phuoc, D.L., Dao-Tran, M., Parreira, J.X. and Hauswirth, M. (2011). A native and adaptive approach for unified processing of linked streams and linked data, Lecture Notes in Computer Science, in L. Aroyo et al. (Eds.), Proceedings of the 10th International Semantic Web Conference (ISWC), Springer, Berlin/Heidelberg, pp. 370–388.

  • Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M. and Rosati, R. (2008). Linking data to ontologies, Journal on Data Semantics4900: 133–173.

  • Rodriguez-Muro, M., Kontchakov, R. and Zakharyaschev, M. (2013). Ontology-based data access: Ontop of databases, in H. Alani et al. (Eds.), Proceedings of the 12th International Semantic Web Conference (ISWC), Lecture Notes in Computer Science, Vol. 8218, Springer, Berlin/Heidelberg, pp. 558–573.

  • Snodgrass, R.T. (Ed.) (1995). The TSQL2 Temporal Query Language, Kluwer, Tucson, AZ.

  • Tappolet, J. and Bernstein, A. (2009). Applied temporal RDF: Efficient temporal querying of RDF data with SPARQL, in L. Aroyo et al. (Eds.), ESWC 2009, Lecture Notes in Computer Science, Vol. 5554, Springer, Berlin/Heidelberg, pp. 308–322.

  • Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R. and Zakharyaschev, M. (2018). Ontology-based data access: A survey, Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, pp. 5511–5519.

  • Xiao, G., Rezk, M., Rodriguez-Muro, M. and Calvanese, D. (2014). Rules and ontology based data access, in R. Kontchakov and M.-L. Mugnier (Eds.), Proceedings of the 8th International Conference on Web Reasoning and Rules Systems (RR), Lecture Notes in Computer Science, Vol. 8741, Springer, Berlin/Heidelberg, pp. 157–172.

  • Zimányi, E. (2006). Temporal aggregates and temporal universal quantification in standard SQL, SIGMOD Record35(2): 16–21.

OPEN ACCESS

Journal + Issues

Search