Estimating the Counterparty Risk Exposure by Using the Brownian Motion Local Time

Open access


In recent years, the counterparty credit risk measure, namely the default risk in over-the-counter (OTC) derivatives contracts, has received great attention by banking regulators, specifically within the frameworks of Basel II and Basel III. More explicitly, to obtain the related risk figures, one is first obliged to compute intermediate output functionals related to the mark-to-market position at a given time no exceeding a positive and finite time horizon. The latter implies an enormous amount of computational effort is needed, with related highly time consuming procedures to be carried out, turning out into significant costs. To overcome the latter issue, we propose a smart exploitation of the properties of the (local) time spent by the Brownian motion close to a given value.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Antonov A. Issakov S. and Mechkov S. (2015). Backward induction for future values Numerix research paper derivatives/2387384/backward-inductionfuture- values.

  • BCBS (2006). Basel II: International convergence of capital measurement and capital standards: A revised framework-comprehensive version Technical Report 128 BCBS Paper

  • BCBS (2011). Basel III: A global regulatory framework for more resilient banks and banking systems-revised version Technical Report 189 BCBS Paper

  • Bernis G. and Scotti S. (2017). Alternative to beta coefficients in the context of diffusions Quantitative Finance 17(2): 275-288.

  • Black F. and Scholes M. (1973). The pricing of options and corporate liabilities The Journal of Political Economy 81(3): 637-654.

  • Bonollo M. Di Persio L. Oliva I. and Semmoloni A. (2015). A quantization approach to the counterparty credit exposure estimation

  • Borodin A. and Salminen P. (2002). Handbook of Brownian Motion: Facts and Formulae 2nd Edn. Birkh¨auser Basel.

  • Brigo D. Morini M. and Pallavicini A. (2013). Counterparty Credit Risk Collateral and Funding: With Pricing Cases for All Asset Classes Wiley Chichester.

  • Brydges D. Van Der Hofstad R. and Konig W. (2007). Joint density for the local times of continuous-time Markov chains The Annals of Probability 35(4): 1307-1332.

  • Callegaro G. Fiorin L. and Grasselli M. (2015). Quantized calibration in local volatility (Cutting Edge: Derivatives Pricing) (2015): 56-67.

  • Callegaro G. Fiorin L. and Grasselli M. (2017). Pricing via quantization in stochastic volatility models Quantitative Finance DOI: 10.1080/14697688.2016.1255348 (in print).

  • Callegaro G. and Sagna A. (2013). An application to credit risk of a hybrid Monte Carlo optimal quantization method Journal of Computational Finance 16(4): 123-156.

  • Castagna A. (2013). Fast computing in the CCR and CVA measurement Technical report IASONWorking paper.

  • Chevalier E. Ly Vath V. and Scotti S. (2013). An optimal dividend and investment control problem under debt constraints Journal on Financial Mathematics 4(1): 297-326.

  • Cordoni F. and Di Persio L. (2014). Backward stochastic differential equations approach to hedging option pricing and insurance problems International Journal of Stochastic Analysis 2014 Article ID: 152389 DOI: 10.1155/2014/152389.

  • Cordoni F. and Di Persio L. (2016). A BSDE with delayed generator approach to pricing under counterparty risk and collateralization International Journal of Stochastic Analysis 2016 Article ID: 1059303 DOI: 10.1155/2016/1059303.

  • Di Persio L. Pellegrini G. and Bonollo M. (2015). Polynomial chaos expansion approach to interest rate models Journal of Probability and Statistics 2015 Article ID: 369053 DOI: 10.1155/2015/369053.

  • Di Persio L. and Perin I. (2015). An ambit stochastic approach to pricing electricity forward contracts: The case of the German energy market Journal of Probability and Statistics 2015 Article ID: 626020 DOI: 10.1155/2015/626020.

  • Doney R. and Yor M. (1998). On a formula of Takacs for Brownian motion with drift Journal of Applied Probability 35(2): 272-280.

  • Glasserman P. (2012). Risk horizon and rebalancing horizon in portfolio risk measurement Mathematical Finance 22(2): 215-249.

  • Haug E. (1983). The Complete Guide to Option Pricing Formulas McGraw-Hill New York NY.

  • Heston S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options The Review of Financial Studies 6(2): 327-343.

  • Hull J. (1999). Options Futures and Other Derivatives Pearson Education Englewood Cliffs NJ.

  • Hull J. and White A. (1990). Pricing interest-rate derivative securities The Review of Financial Studies 3(4): 573-592.

  • Karatzas I. and Shreve S. (1991). Brownian Motion and Stochastic Calculus Springer-Verlag New York NY.

  • Lam K. Yu P. and Xin L. (2009). Accumulator pricing 2009 Symposium on Computational Intelligence for Financial Engineering Nashville TN USA.

  • Lelong J. (2016). Pricing American options using martingale bases .

  • Lévy P. (1939). Sur certains processus stochastiques homog`enes Compositio Mathematica 7: 283-339.

  • Lévy P. (1965). Processus stochastiques et mouvement brownien Gauthier-Villars Paris.

  • Liu Q. (2015). Calculation of credit valuation adjustment based on least square Monte Carlo methods Mathematical Problems in Engineering 2015 Article ID: 959312 DOI: 10.1155/2015/959312.

  • Mijatovic A. (2010). Local time and the pricing oftime-dependent barrier options Finance and Stochastics 14(13): 13-48.

  • Moody’s (2009). Moody’s global corporate finance recovery rates Technical report Moody’s Investors Service.

  • Pagés G. and Wilbertz B. (2011). GPGPUs in computational finance: Massive-parallel computing for American style options Technical report Laboratoire de Probabilit´e Paris VI-VII.

  • Saita F. (2007). Value at Risk and Bank Capital Management Elsevier Cambridge MA.

  • Sinkala W. and Nkalashe T. (2015). Lie symmetry analysis of a first-order feedback model of option pricing Advances in Mathematical Physics 2015 Article ID: 361785 DOI: 10.1155/2015/361785.

  • Takacs L. (1995). On the local time of the Brownian motion The Annals of Applied Probability 5(3): 741-756.

  • Vasicek O. (1977). An equilibrium characterization of the term structure Journal of Financial Economics 5(2): 177-188.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 201 2
PDF Downloads 147 84 2