A modified K3M thinning algorithm

Open access

Abstract

The K3M thinning algorithm is a general method for image data reduction by skeletonization. It had proved its feasibility in most cases as a reliable and robust solution in typical applications of thinning, particularly in preprocessing for optical character recognition. However, the algorithm had still some weak points. Since then K3M has been revised, addressing the best known drawbacks. This paper presents a modified version of the algorithm. A comparison is made with the original one and two other thinning approaches. The proposed modification, among other things, solves the main drawback of K3M, namely, the results of thinning an image after rotation with various angles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abu-Ain W. Abdullah S.N.H.S. Bataineh B. Abu-Ain T. and Omar K. (2013). Skeletonization algorithm for binary images Procedia Technology 11(0): 704-709.

  • Arcelli C. (1981). Pattern thinning by contour tracing Computer Graphics and Image Processing 17(2): 130-144 DOI: 10.1016/0146-664X(81)90021-6.

  • Arcelli C. and Sanniti di Baja G. (1978). On the sequential approach to medial line transformation IEEE Transactions on Systems Man and Cybernetics 8(2): 139-144 DOI: 10.1109/TSMC.1978.4309914.

  • Chen Y. and W.H. H. (1993). Parallel thinning algorithm for binary digital patterns in C. Chen et al. (Eds.) Handbook of Pattern Recognition; Computer Vision World Scientific Publishing River Edge NJ pp. 457-490 DOI: 10.1007/978-3-642-33564-8_78.

  • Deng W. Iyengar S.S. and Brener N.E. (2000). A fast parallel thinning algorithm for the binary image skeletonization International Journal of High Performance Computing Applications 14(1): 65-81.

  • Dinneen G. (1955). Programming pattern recognition Proceedings of the 1955 Western Joint Computer Conference New York NY USA pp. 94-100 DOI: 10.1145/1455292.1455311.

  • Guo Z. and Hall R. (1989). Parallel thinning with two-subiteration algorithms Communications of the ACM 32(3): 359-373 DOI: 10.1145/62065.62074.

  • Kardos P. Nemeth G. and Palagyi K. (2009). An order independent sequential thinning algorithm in P. Wiederhold and R. Barneva (Eds.) Combinatorial Image Analysis Lecture Notes in Computer Science Vol. 5852 Springer Berlin/Heidelberg pp. 162-175 DOI: 10.1007/978-3-642-10210-3_13.

  • Kong T.Y. and Rosenfeld A. (1989). Digital topology: Introduction and survey Computer Vision Graphics and Image Processing 48(3): 357-393 DOI: 10.1016/0734-189X(89)90147-3.

  • Lam L. Lee S. and Sueni C. (1991). Thinning methodologies-a comprehensive survey IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9): 869-885 DOI: 10.1109/34.161346.

  • Misztal K. Szczepański A. Kocjan P. Saeed K. and Tabor J. (2013). Distribution estimation applied to face recognition as a simple and robust solution 2013 International Conference on Biometrics and Kansei Engineering (ICBAKE) Tokyo Japan DOI: 10.1109/ICBAKE.2013.19.

  • Prakash R. Prakash K.S. and Binu V. (2015). Thinning algorithm using hypergraph based morphological operators 2015 IEEE International Advance Computing Conference (IACC) Benglore India pp. 1026-1029.

  • Rutovitz D. (1966). Pattern recognition Journal of the Royal Statistical Society: Series A (General) 129(4): 504-530.

  • Saeed K. Rybnik M. and Tabedzki M. (2001). Implementation and advanced results on the non-interrupted skeletonization algorithm in W. Skarbek (Ed.) Computer Analysis of Images and Patterns Lecture Notes in Computer Science Vol. 2124 Springer Berlin/Heidelberg pp. 601-609.

  • Saeed K. Tabędzki M. Rybnik M. and Adamski M. (2010). K3M: A universal algorithm for image skeletonization and a review of thinning techniques International Journal of Applied Mathematics and Computer Science 20(2): 317-335 DOI: 10.2478/v10006-010-0024-4.

  • Xie F. Xu G. Cheng Y. and Tian Y. (2011). Human body and posture recognition system based on an improved thinning algorithm IET Image Processing 5(5): 420-428 DOI: 10.1049/iet-ipr.2009.0303.

  • Zhang T. and Suen C. (1984). A fast parallel algorithm for thinning digital patterns Communications of the ACM 27(3): 236-239.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 1,504
5-year IMPACT FACTOR: 1,553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2017: 0.13

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 146 10
PDF Downloads 336 302 38