Fault Tolerant Control Using Gaussian Processes and Model Predictive Control

Open access


Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anon (1980). Military specification flying qualities of piloted airplanes MIL-F-8785C.

  • Anon (2015). Federal motor vehicle safety standards Standard no. 135: Light vehicle brake systems Technical report National Highway Traffic Safety Administration Washington DC http://www.access.gpo.gov/nara/cfr/waisidx_08/49cfr571_08.html.

  • Åström K.J. (1970). Introduction to Stochastic Control Theory Academic Press New York NY.

  • Deisenroth M. (2010). Efficient Reinforcement Learning Using Gaussian Processes KIT Scientific Publishing Karlsruhe.

  • Deisenroth M. and Rasmussen C. (2011). PILCO: A model based and data-efficient approach to policy search Proceedings of the 28th International Conference on Machine Learning Bellevue WA pp. 465-472.

  • Edwards C. Lombaerts T. and Smaili H. (2010). Fault Tolerant Flight Control Lecture Notes in Control and Information Sciences Vol. 399 Springer-Verlag Berlin/Heidelberg.

  • Hall J. (2013). Machine Learning for Control: Incorporating Prior Knowledge Ph.D. thesis University of Cambridge Cambridge.

  • Hall J. Rasmussen C. and Maciejowski J. (2012). Modelling and control of nonlinear systems using Gaussian processes with partial model information Proceedings of the IEEE 51st Annual Conference on Decision and Control Maui HI USA pp. 5266-5271.

  • Hartley E. Jerez J. Suardi A. Maciejowski J. Kerrigan E. and Constantinides G. (2012). Predictive control of a Boeing 747 aircraft using an FPGA Proceedings of the IFAC NMPC’12 Conference Noordwijkerhout The Netherlands pp. 80-85.

  • Hartley E.N. Jerez J.L. Suardi A. Maciejowski J.M. Kerrigan E.C. and Constantinides G.A. (2014). Predictive control using an FPGA with application to aircraft control IEEE Transactions on Control Systems Technology 22(3): 1006-1017.

  • Huzmezan M. and Maciejowski J. (1999). Reconfigurable flight control during actuator failures using predictive control 14th IFAC World Congress Beijing China pp. 301-306.

  • Joosten D. and Maciejowski J. (2009). Model predictive controller design for fault-tolerant flight control purposes based upon an existing output feedback controller Proceedings of the 7th IFAC Safeprocess Symposium Barcelona Spain pp. 253-258.

  • Kocijan J. Murray-Smith R. Rasmussen C. and Likar B. (2003). Predictive control with Gaussian process models Proceedings of IEEE Region 8 EUROCON 2003: Computer as a Tool Ljubljana Slovenia Vol. 1 pp. 352-356.

  • Maciejowski J.M. (1998). The implicit daisy-chaining property of constrained predictive control Applied Mathematics and Computer Science 8(4): 695-711.

  • Maciejowski J.M. (1999). Modelling and predictive control: Enabling technologies for reconfiguration Annual Reviews in Control 23(1): 13-23.

  • Maciejowski J. (2002). Predictive Control with Constraints Prentice-Hall Harlow.

  • Maciejowski J. and Jones C. (2003). Fault-tolerant flight control case study: Flight 1862 Proceedings of the 5th IFAC Safeprocess Symposium Washington DC USA pp. 265-276.

  • Maciejowski J. and Yang X. (2013). Fault tolerant control using Gaussian processes and model predictive control Proceedings of the 2nd International Conference on Control and Fault-Tolerant Systems Nice France pp. 1-12.

  • Rasmussen C. and Williams C. (2006). Gaussian Processes for Machine Learning MIT Press Cambridge MA.

  • Rawlings J. and Mayne D. (2009). Model Predictive Control: Theory and Design Nob Hill Publishing Madison WI.

  • Snelson E. and Ghahramani Z. (2005). Sparse Gaussian processes using pseudo-inputs NIPS 2005 Vancouver Canada.

  • Wächter A. and Biegler L.T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming Mathematical Programming 106(1): 25-57.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1,504
5-year IMPACT FACTOR: 1,553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2017: 0.13

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 168 1
PDF Downloads 101 74 1