A modified van der Pol equation with delay in a description of the heart action

Open access


In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. Usage of certain values for feedback and delay parameters allows simulating the heart action when an accessory conducting pathway is present (Wolff-Parkinson-White syndrome).

Atay, F. (1998). Van der Pol’s oscillator under delayed feedback, Journal of Sound and Vibration 218(2): 333-339.

Bielczyk, N., Bodnar, M. and Fory´s, U. (2012). Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation 219(2): 3923-3937.

Cooke, K. and van den Driessche, P. (1986). On zeroes of some transcendental equations, Funkcialaj Ekvacioj 29(2): 77-90.

Erneux, T. and Grasman, J. (2008). Limit cycle oscillators subject to a delayed feedback, Physical Review E 78(2): 026209-1-8.

Foryś, U. (2004). Biological delay systems and the Mikhailov criterion of stability, Journal of Biological Systems 12(1): 45-60.

Giacomin, H. and Neukirch, S. (1997). Number of limit cycles of the Lienard equation, Physical Review E 56(3809): 3809-3813.

Grudzi ski, K. (2007). Modeling the Electrical Activity of the Heart Conduction, Ph.D. thesis, Warsaw University of Technology, Warsaw.

Hale, J. and Lunel, S. (1993). Introduction to Functional Differential Equations, Springer-Verlag, New York, NY.

Jiang, W. and Wei, J. (2008). Bifurcation analysis in van der Pol’s oscillator with delayed feedback, Journal of Computational and Applied Mathematics 213(2): 604-615.

Johnson, L. (1997). Essential Medical Physiology, Lippincott Williams and Wilkins, London.

Kaplan, D. and Glass, L. (1995). Understanding Nonlinear Dynamics, Springer, New York, NY.

Liu, Y., Yang, R., Lu. J. and Cai, X. (2013). Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality, International Journal of Applied Mathematics and Computer Science 23(1): 201-211, DOI: 10.2478/amcs-2013-0016.

Maccari, A. (2001). The response of a parametrically excited van der Pol oscillator to a time delay state feedback, Nonlinear Dynamics 26(2): 105-119.

Palit, A. and Datta, D.P. (2010). On a finite number of limit cycles in a Lienard system, International Journal of Pure and Applied Mathematics 59: 469-488.

Reddy, R.D., Sen, A. and Johnston, G. (2000). Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators, Physical Review Letters 85(3381): 3381-3384.

Xu, J. and Chung, K. (2003). Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D 180(1): 17-39.

Yu, W. and Cao, J. (2005). Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay, Nonlinear Analysis 62: 141-165.

Źebrowski, J., Kuklik, P. and Baranowski, R. (2008). Relaxation oscillations in the atrium-a model, Proceedings of the 5th Conference of the European Study Group on Cardiovascular Oscillations, Parma, Italy, pp. 04:16-04:19.

Zhou, X., Jiang, M. and Cai, X. (2011). Hopf bifurcation analysis for the van der Pol equation with discrete and distributed delays, Discrete Dynamics in Nature and Society, 2011: 1-8, Article ID: 569141.

International Journal of Applied Mathematics and Computer Science

Journal of the University of Zielona Góra

Journal Information

IMPACT FACTOR 2017: 1.694
5-year IMPACT FACTOR: 1.712

CiteScore 2017: 2.20

SCImago Journal Rank (SJR) 2017: 0.729
Source Normalized Impact per Paper (SNIP) 2017: 1.604

Mathematical Citation Quotient (MCQ) 2016: 0.08


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 26
PDF Downloads 18 18 7