A differential evolution approach to dimensionality reduction for classification needs

Open access

Abstract

The feature selection problem often occurs in pattern recognition and, more specifically, classification. Although these patterns could contain a large number of features, some of them could prove to be irrelevant, redundant or even detrimental to classification accuracy. Thus, it is important to remove these kinds of features, which in turn leads to problem dimensionality reduction and could eventually improve the classification accuracy. In this paper an approach to dimensionality reduction based on differential evolution which represents a wrapper and explores the solution space is presented. The solutions, subsets of the whole feature set, are evaluated using the k-nearest neighbour algorithm. High quality solutions found during execution of the differential evolution fill the archive. A final solution is obtained by conducting k-fold crossvalidation on the archive solutions and selecting the best one. Experimental analysis is conducted on several standard test sets. The classification accuracy of the k-nearest neighbour algorithm using the full feature set and the accuracy of the same algorithm using only the subset provided by the proposed approach and some other optimization algorithms which were used as wrappers are compared. The analysis shows that the proposed approach successfully determines good feature subsets which may increase the classification accuracy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 254 122 11
PDF Downloads 94 74 3