An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation

Open access

Abstract

This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new scheme has been experimentally implemented with the aim of confirming the theoretical results.

Abdessameud, A. and Khelfi, M.F. (2006). A variable structure observer for the control of robot manipulators, InternationalJournal of Applied Mathematics and Computer Science16(2):189-196.

Arimoto, S., Parra-Vega, V. and Naniwa, T. (1994). A class of linear velocity observers for nonlinear mechanical systems, Asian Control Conference, Tokyo, Japan, pp. 633-636.

Arimoto, S. (1995a). Fundamental problems of robot control, Part I: Innovation in the realm of robot servo-loops, Robotica13(1): 19-27.

Arimoto, S. (1995b). Fundamental problems of robot control, Part II: A nonlinear circuit theory towards an understanding of dexterous motions, Robotica 13(2): 111-122.

Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear adaptive structure for control of a nonlinear MIMO dynamic plant, International Journal of Applied Mathematicsand Computer Science 23(1): 47-63, DOI: 10.2478/amcs-2013-0005.

Berghuis, H. and Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots, IEEE Transactions onRobotics and Automation 9(6): 740-754.

Burkov, I. (1993). Asymptotic stabilization of nonlinear Lagrangian systems without measuring velocities, InternationalSymposium on Active Control in Mechanical Engineering,Lyon, France, pp. 37-41.

Craig, J., Hsu, P. and Sastry, S. (1987). Adaptive control of mechanical manipulators, International Journal of RoboticsResearch 6(2): 16-28.

Daly, J. and Schwarz, H. (2006). Experimental results for adaptive output feedback control, Robotica 24(6): 727-738.

Kelly, R. (1993). A simple set-point robot controller by using only position measurements, International Federation ofAutomatic Control World Congress, Sydney, Australia, pp. 173-176.

Kelly, R., Carelli, R. and Ortega, R. (1989). Adaptive motion control design to robot manipulators: An input-output approach, International Journal of Control50(6): 2563-2581.

Kelly, R., Santibanez, V. and Loria, A. (2005). Control of RobotManipulators in Joint Space, Springer-Verlag, Berlin.

Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood Cliffs, NJ.

Koditschek, D. (1984). Natural motion for robot arms, Conferenceon Decision and Control, Las Vegas, NV, USA, pp. 733-735.

Lim, S., Dawson, D. and Anderson, K. (1996). Re-examining the Nicosia-Tomei robot observer-controller from a backstepping perspective, IEEE Transactions on ControlSystems Technology 4(3): 304-310.

Lopez-Araujo, D., Zavala-Rio, A., Santibanez, V. and Reyes, F. (2012). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, InternationalJournal of Control, Automation and Systems 11(1): 105-115.

Loría, A., Kelly, R. and Teel, A. (2005). Uniform parametric convergence in the adaptive control of mechanical systems, European Journal of Control 11(2): 87-100.

Loria, A.E., Panteley, Popovic D. and Teel A. (2002). δ-Persistency of excitation: A necessary and sufficient condition for uniform attractivity. IEEE Conference on Decisionand Control, Las Vegas, NV, USA, pp. 3506-3511.

Loria, A. and Nijmeijer, H. (1998). Bounded output feedback tracking control of fully-actuated Euler-Lagrange systems, Systems & Control Letters 33(3): 151-161.

Middleton, R. and Goodwin, G. (1998). Adaptive computed torque control for rigid link manipulators, Systems & ControlLetters 10(1): 9-16.

Moreno-Valenzuela, J., Santibanez, V., Orozco-Manriquez, E. and Gonzalez-Hernandez, L. (2010). Theory and experiments of global adaptive output feedback tracking control of manipulators, IET Control Theory and Applications4(9): 1639-1654.

Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008a). A class of OFT controllers for torque-saturated robot manipulators: Lyapunov stability and experimental evaluation, Journal of Intelligent & Robotic Systems 51(1): 65-88.

Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008b). On output feedback tracking control of robots manipulators with bounded torque input, International Journal of Control,Automation, and Systems 6(1): 76-85.

Nicosia, S. and Tomei, P. (1990). Robot control by using only position measurements, IEEE Transactions on AutomaticControl 35(9): 1058-1061.

Ortega, R., Loria, A. and Kelly, R. (1995). A semiglobally stable output feedback PI2D regulator for robot manipulators, IEEE Transactions on Automatic Control40(8): 1432-1436.

Ortega, R. and Spong, M. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica 25(6): 877-888.

Reyes, F. and Kelly, R. (2001). Experimental evaluation of model-based controllers on a direct-drive robot arm, Mechatronics11(3): 267-282.

Sadegh, N. and Horowitz, R. (1987). Stability analysis of an adaptive controller for robotic manipulators, InternationalConference on Robotics and Automation, Raleigh, NC, USA, pp. 1223-1229.

Santibanez, V. and Kelly, R. (2001). Global asymptotical stability of bounded output feedback tracking control for robot manipulators, IEEE Conference on Decision and Control,Orlando, FL, USA, pp. 1378-1379.

Santibanez, V. and Kelly, R. (1999). Global convergence of the adaptive PD controller with computed feedforward for robot manipulators, IEEE International Conference on Roboticsand Automation, Detroit, MI, USA, pp. 1831-1836.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research6(3): 49-59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). RobotModeling and Control, John Wiley and Sons, New York, NY.

Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematicsand Computer Science 22(4): 985-997, DOI: 10.2478/v10006-012-0073-y.

Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2011). Uniform global asymptotic stability of an adaptive output feedback tracking controller for robot manipulators, InternationalFederation of Automatic Control World Congress,Milan, Italy, pp. 14590-14595.

Zavala-Rio, A., Aguinaga-Ruiz, E. and Santibanez, V. (2011). Global trajectory tracking through output feedback for robot manipulators with bounded inputs, Asian Journal of Control13(3): 430-438.

Zergeroglu, E., Dawson, D.M., de Queiroz, M.S. and Krstic, M. (2000). On global output feedback tracking control of robot manipulators, Proceedings of the IEEE Conference on Decisionand Control, Sydney, Australia, pp. 5073-5077.

Zhang, F., Dawson, D.M., de Queiroz, M.S. and Dixon, W.E. (2000). Global adaptive output feedback tracking control of robot manipulators, IEEE Transactions on Automatic Control45(6): 1203-1208.

International Journal of Applied Mathematics and Computer Science

Journal of the University of Zielona Góra

Journal Information


IMPACT FACTOR 2017: 1.694
5-year IMPACT FACTOR: 1.712

CiteScore 2017: 2.20

SCImago Journal Rank (SJR) 2017: 0.729
Source Normalized Impact per Paper (SNIP) 2017: 1.604

Mathematical Citation Quotient (MCQ) 2017: 0.13

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 107 18
PDF Downloads 43 43 9