Mode set focused hybrid estimation

Open access

Estimating the state of a hybrid system means accounting for the mode of operation or failure and the current state of the continuously valued entities concurrently. Existing hybrid estimation schemes try to overcome the problem of an exponentially growing number of possible mode-sequence/continuous-state combinations by merging hypotheses and/or deducing likelihood measures to identify tractable sets of the most likely hypotheses. However, they still suffer from unnecessarily high computational costs as the number of possible modes increases. Hybrid diagnosis schemes, on the other hand, estimate the current mode of operation/failure only, thus leaving the continuous evolution of the system implicit. This paper proposes a novel scheme that uses a combination of both the approaches in order to define posterior transition probabilities between the specified modes of the hybrid system, hence focusing better on relevant hypotheses. In order to demonstrate the effectiveness of the proposed method, the algorithm is applied to a satellite attitude control system and compared with existing hybrid estimation/diagnosis schemes, such as the Interacting Multiple Model (IMM) algorithm, a purely parity based method (HyDiag), and an existing hybrid Mode Estimation (hME) algorithm.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ackerson G. and Fu K. (1970). On state estimation in switching environments IEEE Transactions on Automatic Control 15(1): 10-17.

  • Bayoudh M. Travé-Massuyès L. and Olive X. (2008). Hybrid systems diagnosis by coupling continuous and discrete event techniques Proceedings of the IFAC WorldCongress Seoul Korea pp. 7265-7270.

  • Benazera E. and Travé-Massuyès L. (2009). Set-theoretic estimation of hybrid system configurations IEEE Transactionson Systems Man and Cybernetics Part B: Cybernetics39(5): 1277-1291.

  • Benazera E. Travé-Massuyès L. and Dague P. (2002). State tracking of uncertain hybrid concurrent systems Proceedingsof the 13th International Workshop on Principles ofDiagnosis (DX02) Semmering Austria pp. 106-114.

  • Blom H. and Bar-Shalom Y. (1988). The interacting multiple model algorithm for systems with Markovian switching coefficients IEEE Transactions on Automatic Control33(8): 780-783.

  • Chow E. and Willsky A. (1984). Analytical redundancy and the design of robust failure detection systems IEEE Transactionson Automatic Control 29(7): 603-614.

  • Cocquempot V. El Mezyani T. and Staroswiecki M. (2004). Fault detection and isolation for hybrid systems using structured parity residuals 5th Asian Control ConferenceMelbourne Australia Vol. 2 pp. 1204 -1212.

  • Daigle M. Roychoudhury I. Biswas G. Koutsoukos X. Patterson-Hine A. and Poll S. (2010). A comprehensive diagnosis methodology for complex hybrid systems: A case study on spacecraft power distribution systems IEEETransactions on Systems Man and Cybernetics Part A:Systems and Humans 4(5): 917-931. de Freitas N. (2002). Rao-Blackwellised particle filtering for fault diagnosis Proceedings of the IEEE Aerospace Conference2002 Big Sky MT USA Vol. 4 pp. 1767-1772.

  • Dearden R. and Clancy D. (2002). Particle filters for real-time fault detection in planetary rovers 13th InternationalWorkshop on Principles of Diagnosis DX02 SemmeringAustria pp. 1-6.

  • Georges J.-P. Theilliol D. Cocquempot V. Ponsart J.-C. and Aubrun C. (2011). Fault tolerance in networked control systems under intermittent observations InternationalJournal of Applied Mathematics and Computer Science21(4): 639-648 DOI: 10.2478/v10006-011-0050-x.

  • Gertler J. (1991). A survey of analytical redundancy methods in failure detection and isolation Preprints ofthe IFAC SAFEPROCESS Symposium Baden-Baden Germany pp. 9-21.

  • Henzinger T. (1996). The theory of hybrid automata Proceedingsof the 11th Annual IEEE Symposium on Logic inComputer Science (LICS ’96) New Brunswick NJ USA pp. 278-292.

  • Hofbaur M. Travé-Massuyès L. Rienmüller T. and Bayoudh M. (2010). Overcoming non-discernibility through mode-sequence analytic redundancy relations in hybrid diagnosis and estimation 21st International Workshop onPrinciples of Diagnosis DX-10 Portland OR USA pp. 71-78.

  • Hofbaur M.W. (2005). Hybrid Estimation of Complex Systems Lectures Notes in Control and Information Sciences Vol. 319 Springer-Verlag Berlin/Heidelberg/New York NY.

  • Hofbaur M.W. and Williams B.C. (2002). Mode estimation of probabilistic hybrid systems in C. Tomlin and M. Greenstreet (Eds.) Hybrid Systems: Computationand Control HSCC 2002 Lecture Notes in Computer Science Vol. 2289 Springer-Verlag Berlin/Heidelberg pp. 253-266.

  • Hofbaur M.W. and Williams B.C. (2004). Hybrid estimation of complex systems IEEE Transactions on Systems Manand Cybernetics Part B: Cybernetics 34(5): 2178-2191.

  • Kamau S. and Lunze J. (2003). Controller synthesis for linear switched systems IFAC Conference on Analysis and Designof Hybrid Systems Saint Malo France pp. 141-146.

  • Koutsoukos X. Kurien J. and Zhao F. (2002). Monitoring and diagnosis of hybrid systems using particle filtering methods 15th International Symposium on MathematicalTheory Networks and Systems South Bend IN USA pp. 1-15.

  • Li X. and Bar-Shalom Y. (1996). Multiple-model estimation with variable structure IEEE Transactions on AutomaticControl 41(4): 478-493.

  • Narasimhan S. and Biswas G. (2002). An approach to model-based diagnosis of hybrid systems in C. Tomlin and M. Greenstreet (Eds.) Hybrid Systems: Computationand Control HSCC 2002 Lecture Notes in Computer Science Vol. 2289 Springer-Verlag Berlin/Heidelberg pp. 308-322.

  • Narasimhan S. Dearden R. and Benazera E. (2004). Combining particle filters and consistency based approaches for monitoring and diagnosis of stochastic hybrid systems Proceedings of the 15th InternationalWorkshop on Principles of Diagnosis (DX04) CarcassonneFrance pp. 123-128.

  • Olive X. (2012). FDI(R) for satellites: How to deal with high availability and robustness in the space domain? InternationalJournal of Applied Mathematics and Computer Science22(1): 99-107 DOI: 10.2478/v10006-012-0007-8.

  • Rienmüller T. Bayoudh M. Hofbaur M. and Travé-Massuyès L. (2009). Hybrid estimation through synergic mode-set focusing IFAC SAFEPROCESS Symposium BarcelonaSpain pp. 462-467.

  • Semerdjiev E. and Mihaylova L. (1998). Adaptive interacting multiple model algorithm for manoeuvring ship tracking 1998 International Conference on Information Fusion LasVegas NV USA pp. 974-979.

  • Staroswiecki M. and Comet-Varga G. (2001). Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems Automatica 37(5): 687-699.

  • Verma V. Gordon G. Simmons R. and Thrun S. (2004). Real-time fault diagnosis IEEE Robotics and AutomationMagazine 11(2): 56-66.

  • Vidal R. Chiuso A. Soatto S. and Sastry S. (2003). Observability of linear hybrid systems Hybrid Systems:Computation and Control HSCC 2003 Lecture Notes in Computer Science Vol. 2623 Springer-Verlag Berlin/Heidelberg/New York NY pp. 526-539.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 84 1
PDF Downloads 84 43 2