The island model as a Markov dynamic system

Open access

Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations and can perform a much broader search than single-population ones. However, their formal analysis does not seem to have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by Vose, Rudolph and their collaborators. An original and crucial feature of the framework we propose is the mechanism of inter-deme agent operation synchronization. It is important from both a practical and a theoretical point of view. We show that under a mild assumption the resulting Markov chain is ergodic and the sequence of the related sampling measures converges to some invariant measure. The asymptotic guarantee of success is also obtained as a simple issue of ergodicity. Moreover, if the cardinality of each island population grows to infinity, then the sequence of the limit invariant measures contains a weakly convergent subsequence. The formal description of the island model obtained for the case of solving a single-objective problem can also be extended to the multi-objective case

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alba E. and Tomassini M. (2002). Parallelism and evolutionary algorithms IEEE Transactions on Evolutionary Computation 6(5): 443-462.

  • Aparicio J. Correia L. and Moura-Pires F. (1999). Populations are multisets-plato in W. Banzhaf J. Daida A.E. Eiben M.H. Garzon V. Honavar M. Jakiela and R.E. Smith (Eds.) Proceedings of the Genetic and Evolutionary Computation Conference Orlando Florida USA 13-17 July 1999 Vol. 2 Morgan Kaufmann San Francisco CA pp. 1845-1850.

  • Bäck T. Fogel D. and Michalewicz Z. (2000). Evolutionary Computation: Basic Algorithms and Operators Vols. 1 and 2 Institute of Physics Publishing Bristol/Philadelphia PA .

  • Back T. Hammel U. and Schwefel H.-P. (1997). Evolutionary computation: Comments on the history and current state IEEE Transactions on Evolutionary Computation 1(1): 3-17.

  • Billingsley P. (1995). Probability and Measure Wiley-Interscience Hoboken NJ.

  • Brabazon A. and O’Neill M. (2006). Biologically Inspired Algorithms for Financial Modeling Springer Verlag Berlin/Heidelberg.

  • Buckley F. Nicol S. and Pollett P. (2010). Preface to the selected papers on modeling and control of metapopulation networks Ecological Modeling 221(21): 2512-2514.

  • Byrski A. and Schaefer R. (2009). Stochastic model of evolutionary and immunological multi-agent systems: Mutually exclusive actions Fundamenta Informaticae 95(2-3): 263-285.

  • Cantú-Paz E. (1995). A summary of research on parallel genetic algorithms IlliGAL Report No. 95007 University of Illinois Chicago IL.

  • Cantú-Paz E. (2000). Efficient and Accurate Parallel Genetic Algorithms Kluwer Academic Publishers Norwell MA.

  • Davis T.E. and Principe J.C. (1991). A simulated annealing like convergence theory for the simple genetic algorithm Proceedings of the 4th International Conference on Genetic Algorithms San Diego CA USA pp. 174-181.

  • Diekert V. and Rozenberg G. (1995). The Book of Traces World Scientific Singapore.

  • Droste S. Jansen T. and Wegener I. (1998a). On the optimization of unimodal functions with the (1+1) evolutionary algorithm Proceedings of the 5th International Conference on Parallel Problem Solving from Nature Amsterdam The Netherlands pp. 13-22.

  • Droste S. Jansen T. and Wegener I. (1998b). A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs Evolutionary Computation 6(2): 185-196.

  • Gajda E. Schaefer R. and Smołka M. (2010). Evolutionary multiobjective optimization algorithm as a Markov system Proceedings of the 11th International Conference on Parallel Problem Solving from Nature PPSN XI Krako´ w Poland pp. 617-626.

  • Goldberg D.E. and Segrest P. (1987). Finite Markov chain analysis of genetic algorithms Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic Algorithms and Their Application Cambridge MA USA pp. 1-8.

  • Gordon V. Whitley D. and Bohn A. (1992). Data flow parallelism in genetic algorithms in R. Manner and B. Manderick (Eds.) Parallel Problem Solving from Nature 2 Elsevier Science Amsterdam pp. 553-542.

  • Grochowski M. Schaefer R. and Uhruski P. (2004). Diffusion based scheduling in the agent-oriented computing systems in R. Wyrzykowski J. Dongarra M. Paprzycki and J. Wa s´ niewski (Eds.) Parallel Processing and Applied Mathematics Lecture Notes in Computer Science Vol. 3019 Springer Berlin/Heidelberg pp. 97-104.

  • Harik G. Cantú-Paz E. Goldberg D.E. and Miller B.L. (1999). The gambler’s ruin problem genetic algorithms and the sizing of populations Evolutionary Computation 7(3): 251-253.

  • Hennessy M. (1988). Algebraic Theory of Processes The MIT Press Cambridge MA.

  • Hewitt C. Bishop P. and Steiger R. (1973). A universal modular ACTOR formalism for artificial intelligence Proceedings of the 3rd International Joint Conference on Artificial Intelligence Stanford CA USA pp. 235-245.

  • Horn J. (1993). Finite Markov chain analysis of genetic algorithms with niching Proceedings of the 5th International Conference on Genetic Algorithms Urbana-Champaign IL USA pp. 110-117.

  • Horst R. and Pardalos P. (1995). Handbook of Global Optimization Kluwer Norwell MA.

  • Iosifescu M. (1980). Finite Markov Processes and Their Applications John Wiley & Sons Alphen aan den Rijn.

  • Kołodziej J. and Xhafa F. (2011). Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids International Journal of Applied Mathematics and Computer Science 21(2) 243-257 DOI: 10.2478/v10006-011-0018-x.

  • Kowalczuk Z. and Białaszewski T. (2006). Niching mechanisms in evolutionary computations International Journal of Applied Mathematics and Computer Science 16(1): 59-84.

  • Kushner H. (1971). Introduction to Stochastic Control Rinehart and Winston Holt.

  • Lässig J. and Sudholt D. (2010). General scheme for analyzing running times of parallel evolutionary algorithms in R. Schaefer C. Cotta J. Kołodziej and G. Rudolph (Eds.) Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part I Springer-Verlag pp. 234-243.

  • Li C. and Yang S. (2008). An island based hybrid evolutionary algorithm for optimization in X. Li M. Kirley M. Zhang D.G. Green V. Ciesielski H.A. Abbass Z. Michalewicz T. Hendtlass K. Deb K.C. Tan J. Branke and Y. Shi (Eds.) SEAL Lecture Notes in Computer Science Vol. 5361 Springer Berlin/Heidelberg pp. 180-189.

  • Liekens A. (2005). Evolution of Finite Populations in Dynamic Environments Ph.D. thesis Technische Universiteit Eindhoven Eindhoven.

  • Mahfoud S. (1991). Finite Markov chain models of an alternative selection strategy for the genetic algorithm Complex Systems 7(2): 155-170.

  • Manderick B. and Spiessens P. (1989). Fine-grained parallel genetic algorithms in J. Schaffer (Ed.) Proceedings of the Third International Conference on Genetic Algorithms Morgan Kauffman San Francisco CA p. 428.

  • Mesghouni K. Hammadi S. and Borne P. (2004). Evolutionary algorithms for job-shop scheduling International Journal of Applied Mathematics and Computer Science 14(1): 91-103.

  • Milner R. (1990). Functions as processes in M. Paterson (Ed.) Automata Languages and Programming Lecture Notes in Computer Science Vol. 443 Springer Berlin/Heidelberg pp. 167-180.

  • Mühlenbein H. (1989). Parallel genetic algorithms population genetic and combinatorial optimization in J. Schaffer (Ed.) Proceedings of the Third International Conference on Genetic Algorithms Morgan Kauffman San Francisco CA pp. 416-421.

  • Mühlenbein H. (1992). How genetic algorithms really work: Mutation and hillclimbing in R. Ma¨nner and B. Manderick (Eds.) Proceedings of PPSN ’92 Elsevier Amsterdam pp. 15-26.

  • Nagylaki T. (1979). The island model with stochastic migration Genetics 91(1): 163-76.

  • Nix A.E. and Vose M.D. (1992). Modeling genetic algorithms with Markov chains Annals of Mathematics and Artificial Intelligence 5(1): 79-88.

  • Paredis J. (1998). Coevolutionary algorithms in T. Back D. Fogel and Z. Michalewicz (Eds.) Handbook of Evolutionary Computation 1st Suppl. IOP Publishing/Oxford University Press Bristol/Oxford.

  • Peterson J.L. (1981). Petri Net Theory and the Modeling of Systems Prentice Hall Upper Saddle River NJ.

  • Potter M.A. and De Jong K.A. (2000). Cooperative coevolution: An architecture for evolving coadapted subcomponents Evolutionary Computation 8(1): 1-29.

  • Rinnoy Kan A. and Timmer G. (1987). Stochastic global optimization methods Mathematical Programming 39: 27-56.

  • Rudolph G. (1994). Massively parallel simulated annealing and its relation to evolutionary algorithms Evolutionary Computation 1(4): 361-383.

  • Rudolph G. (1997). Stochastic processes (Chapter B.2.2) Models of stochastic convergence (Chapter B.2.3) in T. Ba¨ck D.B. Fogel and Z. Michalewicz (Eds.) Handbook of Evolutionary Computations Oxford University Press Oxford.

  • Rudolph G. (2006). Takeover time in parallel populations with migration Proceedings of the 2nd International Conference on Bioinspired Optimization Methods and Their Applications (BIOMA 2006) Ljubljana Slovenia pp. 63-72.

  • Schaefer R. Byrski A. Kołodziej J. and Smołka M. (2012). An agent-based model of hierarchic genetic search Computers and Mathematics with Applications DOI: 10.1016/j.camwa.2012.02.052 (accepted).

  • Schaefer R. Byrski A. and Smołka M. (2009). Stochastic model of evolutionary and immunological multi-agent systems: Parallel execution of local actions Fundamenta Informaticae 95(2-3): 325-348.

  • Schaefer R. and Telega H. (2007). Foundation of Global Genetic Optimization Studies in Computational Intelligence Vol. 74 Springer Verlag Berlin/Heidelberg/New York NY.

  • Schmitt L.M. (2001). Theory of genetic algorithm Theoretical Computer Science 259(1): 1-61.

  • Skolicki Z. (2007). An Analysis of Island Models In Evolutionary Computation Ph.D. thesis George Mason University Fairfax VA.

  • Skolicki Z. and de Jong K. (2004). Improving evolutionary algorithms with multi-representation island models 8th International Conference on Parallel Problem Solving from Nature PPSN Birmingham UK pp. 420-429.

  • Suzuki J. (1993). A Markov Chain Analysis on a Genetic Algorithm in S. Forrest (Ed.) Proceedings of the 5th International Conference on Genetic Algorithms Urbana-Champaign IL USA June 1993 Morgan Kaufmann San Francisco CA pp. 146-154.

  • Terzo O. Mossucca L. Cucca M. and Notarpietro R. (2011). Data intensive scientific analysis with grid computing International Journal of Applied Mathematics and Computer Science 21(2): 219-228 DOI: 10.2478/v10006-011-0016-z.

  • Tomassini M. (2005). Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time Natural Computing Series Springer Berlin/Heidelberg.

  • Vose M. (1998). The Simple Genetic Algorithm: Foundations and Theory MIT Press Cambridge MA.

  • Vose M. and Liepins G. (1991). Punctuated equilibria in genetic search Complex Systems 5: 31-44.

  • Whitley D. (1992). An executable model of a simple genetic algorithm in L.D. Whitley (Ed.) Foundations of Genetic Algorithms 2 Morgan Kaufmann San Francisco CA pp. 45-62.

  • Whitley W.D. Rana S.B. and Heckendorn R.B. (1997). Island model genetic algorithms and linearly separable problems in D. Corne and J.L. Shapiro (Eds.) Selected Papers from the AISB Workshop on Evolutionary Computing Springer-Verlag London pp. 109-125.

  • Wolpert D.H. and Macready W.G. (1997). No free lunch theorems for optimization IEEE Transactions on Evolutionary Computation 1(1): 67-82.

  • Wood G.R. and Zabinsky Z.B. (2002). Stochastic adaptive search in P.M. Pardalos and H.E. Romeijn (Eds.) Handbook of Global Optimization Vol. 2 Kluwer Norwell MA.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 242 143 14
PDF Downloads 79 55 5