A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics

Open access

A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics

Our aim is to adapt Fletcher's filter approach to solve optimal control problems for systems described by nonlinear Partial Differential Equations (PDEs) with state constraints. To this end, we propose a number of modifications of the filter approach, which are well suited for our purposes. Then, we discuss possible ways of cooperation between the filter method and a PDE solver, and one of them is selected and tested.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Armaou A. and Christofides P. D. (2002). Dynamic optimization of dissipative PDE systems using nonlinear order reduction Chemical Engineering Science 57: 5083-5114.

  • Aschemanna H. Kostinb G. V. Rauha A. and Saurinb V. V. (2010). Approaches to control design and optimization in heat transfer problems International Journal of Computer and Systems Sciences 49(3): 380-391.

  • Audet C. and Dennis J. E. (2004). A pattern search filter method for nonlinear programming without derivatives SIAM Journal on Optimization 14(4): 980-1010.

  • Bellavia S. Macconi M. and Morini B. (2004). STRSCNE: A scaled trust-region solver for constrained nonlinear equations Computational Optimization and Applications 28(1): 31-50.

  • Betts J. T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming 2nd Edn. Society for Industrial and Applied Mathematics Philadelphia PA.

  • Biegler L. T. (2010). Nonlinear Programming. Concepts Algorithms and Applications to Chemical Processes SIAM Philadelphia PA.

  • Burger J. and Pogu M. (1991). Functional and numerical solution of a control problem originating from heat transfer Journal of Optimization Theory and Applications 68(1): 49-73.

  • Broyden C. G. (1970). The convergence of a class of double-rank minimization algorithms Journal of the Institute of Mathematics and Its Applications 6: 76-90.

  • Butkovskiy A. G. (1969). Distributed Control Systems 1st Edn. Elsevier New York NY.

  • Byrd R. H. Curtis F. E. and Nocedal J. (2010). Infeasibility detection and SQPmethods for nonlinear optimization SIAM Journal on Optimization 20(5): 2281-2299.

  • Chin C. M. and Fletcher R. (2003). On the global convergence of an SLP-filter algorithm that takes EQP steps Mathematical Programming 96(1): 161-177.

  • Chin C. M. Rashid A. H. A. and Nor K. M. (2007). Global and local convergence of a filter line search method for non-linear programming Optimization Methods and Software 22(3): 365-390.

  • Christofides P. D. (2001). Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes Birkhauser Boston MA.

  • Conn A. R. Gould N. I. and Toint P. L. (2000). Trust-Region Methods MPS-SIAM Series on Optimization SIAM Philadelphia PA.

  • Demetriou M. A. and Kazantzis N. (2004). A new actuator activation policy for performance enhancement of controlled diffusion processes Automatica 40(3): 415-421.

  • El-Farra N. E. Armaou A. and Christofides P. D. (2003). Analysis and control of parabolic PDE systems with input constraints Automatica 39(3): 715-725.

  • Fattorini H. O. (1999). Infinite Dimensional Optimization and Control Theory Cambridge University Press Cambridge.

  • Fletcher R. and Leyffer S. (2002). Nonlinear programming without a penalty function Mathematical Programming Series A 91(2): 239-269.

  • Fletcher R. Leyffer and Toint P. L. (2002a). On the global convergence of a filter-SQP algorithm SIAM Journal on Optimization 13(1): 44-59.

  • Fletcher R. Gould N. I. M. Leyffer S. Toint Ph.L. and Wachter A. (2002b). Global convergence of trust-region SQP-filter algorithms for general nonlinear programming SIAM Journal on Optimization 13(3): 635-659.

  • Fletcher R. (2010). The sequential quadratic programming method in G. Di Pillo and F. Schoen (Eds.) Nonlinear Optimization Lecture Notes in Mathematics Vol. 1989 Springer-Verlag Berlin/Heidelberg.

  • Han J. and Papalambros P. Y. (2010). An SLP Filter algorithm for probabilistic analytical target cascading Structural and Multidisciplinary Optimization 41(5): 935-945.

  • Hinze M. Pinnau R. Ulbrich M. and Ulbrich S. (2009). Optimization with PDE Constraints Springer Berlin/Heidelberg.

  • Lasiecka I. and Triggiani R. (2000). Control Theory for Partial Differential Equations: Continuous and Approximation Theories Vol. I: Abstract Parabolic Systems Vol. II: Abstract Hyperbolic-Like Systems over a Finite Time Horizon Encyclopedia of Mathematics and Its Applications Vol. 74 Cambridge University Press Cambridge.

  • Lasiecka I. and Chueshow I. (2010). Von Karman Evolution Equations: Well-posedness and Long Time Dynamics Springer Berlin/Heidelberg.

  • Lasiecka I. and Chueshow I. (2008). Long-time Behavior of Second Order Evolution Equations with Nonlinear Damping Memoirs of the American Mathematical Society Philadephia PA.

  • Li D. (2006). A new SQP-filter method for solving nonlinear programming problems Journal of Computational Mathematics 24(5): 609-634.

  • Nie P. and Ma C. (2006). A trust-region filter method for general non-linear programming Applied Mathematics and Computation 172(2): 1000-1017.

  • Nettaanmaki P. and Tiba D. (1994). Optimal Control of Nonlinear Parabolic Systems Marcel Dekker New York NY.

  • Nocedal J. and Wright S. J. (2006). Numerical Optimization Springer Berlin/Heidelberg.

  • Perona P. and Malik J. (1990). Scale-space and edge detection using anisotropic diffusion IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7): 629-639.

  • Rafajłowicz E. (2008). Testing homogeneity of coefficients in distributed systems with application to quality monitoring IEEE Transactions on Control Systems Technology 16: 314-321.

  • Rafajłowicz E. and Rafajłowicz W. (2010). Testing (non-)linearity of distributed-parameter systems from a video sequence Asian Journal of Control 12(2): 453-461.

  • Schittkowski K. (2002). Numerical Data Fitting in Dynamical Systems; A Practical Introduction with Applications and Software Applied Optimization Vol. 77 Kluwer Academic Publishers Dordrecht.

  • Schittkowski K. (2009). An active set strategy for solving optimization problems with up to 200000000 nonlinear constraints Applied Numerical Mathematics 59(12): 2999-3007.

  • Shen C. Xue W. and Pu D. (2009). Global convergence of a tridimensional filter SQP algorithm based on the line search method Applied Numerical Mathematics 59(2): 235-250.

  • Shen C. Xue W. and Chen X. (2010). Global convergence of a robust filter SQP algorithm European Journal of Operational Research 206(1): 34-45.

  • Skowron M. and Styczeń K. (2009). Evolutionary search for globally optimal stable multicycles in complex systems with inventory couplings International Journal of Chemical Engineering Article ID 137483 DOI:10.1155/2009/137483.

  • Su K. and Che J. (2007). A modified SQP-filter method and its global convergence Applied Mathematics and Computation 194(1): 92-101.

  • Su K. and Yu Z. (2009). A modified SQP method with non-monotone technique and its global convergence Computers and Mathematics with Applications 57(2): 240-247.

  • Troltzsch F. (2010). Optimal Control of Partial Differential Equations. Theory Methods and Applications American Mathematical Society Press Providence RI.

  • Turco A. (2010). Adaptive filter SQP in C. Blum and R. Battiti (Eds.) Learning and Intelligent Optimization Lecture Notes in Computer Science Vol. 6073 Springer-Verlag Berlin/Heidelberg pp. 68-81.

  • Uciński D. (2005). Optimal Measurement Methods for Distributed Parameter System Identification CRC Press London/New York NY.

  • Ulbrich S. (2004). On the superlinear local convergence of a filter-SQP method Mathematical Programming Series B 100(1): 217-245.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 225 108 2
PDF Downloads 69 48 0