Data intensive scientific analysis with grid computing

Open access

Data intensive scientific analysis with grid computing

At the end of September 2009, a new Italian GPS receiver for radio occultation was launched from the Satish Dhawan Space Center (Sriharikota, India) on the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to implement the overall processing radio occultation chain. After a brief description of the adopted algorithms, which can be used to characterize the temperature, pressure and humidity, the contribution will focus on a method for automatic processing these data, based on the use of a distributed architecture. This paper aims at being a possible application of grid computing for scientific research.

ASI (2010). Italian Space Agency

Berman, F., Fox, G. and Hey A. (2003). Grid Computing Making the Global Infrastructure a Reality, Wiley, Chichester, pp. 117-170.

Buyya, R., Abramson, D. and Giddy, J. (2000). NIMROD/G: An architeture of a resource management and scheduling system in a global computational grid, High Performance Computing Asia 2000, Beijing, China, pp. 283-289.

Dimitriadou, S. and Karatza, H. (2010). Job scheduling in a distributed system using backfilling with inaccurate runtime computation, International Conference on Complex, Intelligent and Software Intensive System, Washington, DC, USA, pp. 329-336.

Foster, I. and Kesselman C. (2003). The Grid 2: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, San Francisco, CA, pp. 38-63.

Globus (2010a). The globus alliance

Globus (2010b). The globus consortium

Gradwell, P. (2002). Grid scheduling with agents, Proceedings of the Second International Joint Conference on Autonomous Agents & Multi-Agent Systems (AAMAS 2003), Melbourne, Australia, pp. 229-245.

ISRO (2010). Indian space research organization

Kurowski, K., Nabrzyski, J.,A., Oleksiak, A. and Weglarz, J. (2006). Scheduling jobs on the grid multicriteria approach, Computational Methods in Science and Technology12(2): 123-138.

Kursinski, E.R., Hajj, G.A., Schofield J.T., Linfield R.P., and Hardy K.R. (1997). Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, Journal of Geophysical Research102(D19): 23.429-23.465.

Leonid O., Rupak B., Hongzhang S. and Warren S. (2004). Job scheduling in a heterogeneous grid environment, Lawrence Berkeley National Laboratory

Luntama, J.P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln, A., O'Clerigh, E. and Marquardt, C. (2008). Prospects of the EPS GRAS mission for operational atmospheric applications, Bulletin of the American Meteorological Society89(12): 1863.

Melbourne, W.G., Davis, E.S., Duncan, C.B., Hajj, G.A., Hardy, K.R., Kursinski, E.R., Meehan, T.K., Young, L.E. and Yunck T.P. (1994). The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publication, pp: 18-94.

Wickert J., Schmidt T., Beyerle G., Knig R., Reigber C. and Jakowski N. (2004). The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles, Journal of the Meteorological Society of Japan82(1B): 381-395.

International Journal of Applied Mathematics and Computer Science

Journal of the University of Zielona Góra

Journal Information

IMPACT FACTOR 2017: 1.694
5-year IMPACT FACTOR: 1.712

CiteScore 2017: 2.20

SCImago Journal Rank (SJR) 2017: 0.729
Source Normalized Impact per Paper (SNIP) 2017: 1.604

Mathematical Citation Quotient (MCQ) 2016: 0.08


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 14
PDF Downloads 12 12 8