Nonlinear Filtering for Markov Systems with Delayed Observations

Open access

Nonlinear Filtering for Markov Systems with Delayed Observations

This paper deals with nonlinear filtering problems with delays, i. e., we consider a system (X, Y), which can be represented by means of a system (X, Ŷ), in the sense that Yt = Ŷa(t), where a(t) is a delayed time transformation. We start with X being a Markov process, and then study Markovian systems, not necessarily diffusive, with correlated noises. The interest is focused on the existence of explicit representations of the corresponding filters as functionals depending on the observed trajectory. Various assumptions on the function a(t) are considered.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baras J.S. Blankenship G.L. and Hopkins Jr. W.E. (1983). Existence uniqueness and asymptotic behavior of solutions to a class of Zakai equations with unbounded coefficients IEEE Transactions on Automatic Control 28(2): 203-214.

  • Bhatt A.G. Kallianpur G. and Karandikar R.L. (1995). Uniqueness and robustness of solution of measure-valued equations of nonlinear filtering The Annals of Probability 23(4): 1895-1938.

  • Brémaud P. (1981). Point Processes and Queues. Martingale Dynamics Springer-Verlag New York NY.

  • Calzolari A. Florchinger P. and Nappo G. (2003). Nonlinear filtering for Markov diffusion systems with delayed observations Proceedings of the 42nd Conference on Decision and Control Maui HI USA pp. 1404-1405.

  • Calzolari A. Florchinger P. and Nappo G. (2006). Approximation of nonlinear filters for Markov systems with delayed observations SIAM Journal on Control and Optimization 45(2): 599-633.

  • Calzolari A. Florchinger P. and Nappo G. (2007). Convergence in nonlinear filtering for stochastic delay systems SIAM Journal on Control and Optimization 46(5): 1615-1636.

  • Cannarsa P. and Vespri V. (1985). Existence and uniqueness of solutions to a class of stochastic partial differential equations Stochastic Analysis and Applications 3(3): 315-339.

  • Clark J.M.C. (1978). The design of robust approximations to the stochastic differential equations of nonlinear filtering Communication systems and random process theory (Proceedings of the 2nd NATO Advanced Study Institute Darlington 1977) Vol. 25 of NATO Advanced Study Institute Series E: Applied Sciences Sijthoff & Noordhoff Alphen aan den Rijn pp. 721-734.

  • Cvitanić J. Liptser R. and Rozovskii B. (2006). A filtering approach to tracking volatility from prices observed at random times The Annals of Applied Probability 16(3): 1633-1652.

  • Davis M.H.A. (1982). A pathwise solution of the equations of nonlinear filtering Akademiya Nauk SSSR. Teoriya Veroyatnostei i ee Primeneniya 27(1): 160-167.

  • Elliott R.J. and Kohlmann M. (1981). Robust filtering for correlated multidimensional observations Mathematische Zeitschrift 178(4): 559-578.

  • Florchinger P. (1993). Zakai equation of nonlinear filtering with unbounded coefficients. The case of dependent noises Systems & Control Letters 21(5): 413-422.

  • Frey R. Prosdocimi C. and Runggaldier W.J. (2007). Affine credit risk models under incomplete information in J. Akahori S. Ogawa S. Watanabe (Eds) Stochastic Processes and Applications to Mathematical Finance. Proceedings of the 6th Ritsumeikan International Symposium Ritsumeikan University Japan World Scientific Publishing Co. pp. 97-113.

  • Hopkins Jr. W.E. (1982). Nonlinear filtering of nondegenerate diffusions with unbounded coefficients Ph. D. thesis University of Maryland at College Park.

  • Joannides M. and Le Gland F. (1995). Nonlinear filtering with perfect discrete time observations Proceedings of the 34th Conference on Decision and Control New Orleans LA USA pp. 4012-4017.

  • Kirch M. and Runggaldier W.J. (2004/05). Efficient hedging when asset prices follow a geometric Poisson process with unknown intensities SIAM Journal on Control and Optimization 43(4): 1174-1195.

  • Kliemann W. Koch G. and Marchetti F. (1990). On the unnormalized solution of the filtering problem with counting observations IEEE Transactions on Information Theory 316(6): 1415-1425.

  • Kunita H. (1984). Stochastic differential equations and stochastic flows of diffeomorphisms École d'été de probabilités de Saint-Flour XII—1982 Vol. 1097 of Lecture Notes in Mathematics Springer Berlin pp. 143-303.

  • Liptser R.S. and Shiryaev A.N. (1977). Statistics of random processes. I Vol. 5 of Applications of Mathematics Expanded Edn Springer-Verlag Berlin.

  • Pardoux E. (1991). Filtrage non linéaire et équations aux dérivées partielles stochastiques associées Ecole d'Eté de Probabilités de Saint-Flour XIX—1989 Vol. 1464 of Lecture Notes in Mathematics Springer Berlin pp. 67-163.

  • Schweizer M. (1994). Risk-minimizing hedging strategies under restricted information Mathematical Finance. An International Journal of Mathematics Statistics and Financial Economics 4(4): 327-342.

  • Sussmann H.J. (1981). Rigorous results on the cubic sensor problem Stochastic systems: The mathematics of filtering and identification and applications (Les Arcs 1980) Vol. 78 of NATO Advanced Study Institute Series C: Mathematical and Physical Sciences Reidel Dordrecht pp. 637-648.

  • Zakai M. (1969). On the optimal filtering of diffusion processes Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 11: 230-243.

  • Zeng Y. (2003). A partially observed model for micromovement of asset prices with Bayes estimation via filtering Mathematical Finance. An International Journal of Mathematics Statistics and Financial Economics 13(3): 411-444.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 1,504
5-year IMPACT FACTOR: 1,553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2017: 0.13

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 96 8
PDF Downloads 65 53 5