Block-Based Physical Modeling with Applications in Musical Acoustics

Open access

Block-Based Physical Modeling with Applications in Musical Acoustics

Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of block-based physical modeling, where arbitrary discrete-time state space representations can communicate via wave variables. An example in musical acoustics shows the application of block-based modeling to multidimensional physical systems.

Bilbao S. (2004). Wave and Scattering Methods for Numerical Simulation, Wiley & Sons, Chichester.

Fettweis A. (1971). Digital filters related to classical filter networks, Archiv für Electronik und Übertragungstechnik (International Journal of Electronics and Communications)25: 79-89.

Fettweis A. (1986). Wave digital filters: Theory and practice, Proceedings of the IEEE74(2): 270-327.

Fettweis A. (1992). Multidimensional wave digital filters for discrete-time modelling of Maxwell's equations, International Journal of Numerical Modelling, Electronic Networks, Devices, and Fields5: 183-201.

Fettweis A. (2002). The wave-digital method and some of its relativistic implications, IEEE Transactions on Circuits and Systems I49(6): 862-868.

Fettweis A. and Nitsche G. (1991). Numerical integration of partial differential equations using principles of multidimensional wave digital filters, Journal of VLSI Signal Processing3: 7-24.

Fletcher N. (1993). Autonomous vibration of simple pressure-controlled valves in gas flows, Journal of the Acoustical Society of America93(4): 2172-2179.

Fletcher N. H. and Rossing T. D. (1998). The Physics of Musical Instruments, 2nd Edn., Springer-Verlag, New York, NY.

Fränken D., Ochs J. and Ochs K. (2005). Generation of wave digital structures for networks containing multiport elements, IEEE Transactions on Circuits and Systems I, 52(3): 586-596.

Karjalainen M. and Erkut C. (2004). Digital waveguides versus finite difference structures: Equivalence and mixed modeling, EURASIP Journal on Applied Signal Processing2004(7): 978-989.

Krach B., Petrausch S. and Rabenstein R. (2004). Digital sound synthesis of brass instruments by physical modeling, Proceedings of the Conference on Digital Audio Effects (DAFx) 04, Naples, Italy, pp. 101-106.

Ochs K. (2001). Passive integration methods: Fundamental theory, International Journal of Electronic Communication (AEÜ)55(3): 153-163.

Petrausch S. and Rabenstein R. (2004). A simplified design of multidimensional transfer function models, Proceedings of the International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP2004), Vienna, Austria, pp. 35-40.

Petrausch S. and Rabenstein R. (2005a). Application of block based physical modeling for digital sound synthesis of brass instruments, Proceedings of the Conference on Forum Acusticum (FA 2005), Budapest, Hungary, pp. 703-708.

Petrausch S. and Rabenstein R. (2005b). Interconnection of state space structures and wave digital filters, IEEE Transactions on Circuits and Systems II52(2): 90-93.

Rabenstein R. and Petrausch S. (2006). Block-based physical modeling, Proceedings of the 5th International Symposium on Mathematical Modelling (MATHMOD), Vienna, Austria, pp. 2-1-2-17.

Rabenstein R., Petrausch S., Sarti A., De Sanctis G., Erkhut C. and Karjalainen M. (2007). Blocked-based physical modeling for digital sound synthesis, Signal Processing Magazine24(2): 42-54.

Rabenstein R. and Trautmann L. (2003). Towards a framework for continuous and discrete multidimensional systems, International Journal of Applied Mathematics and Computer Science13(1): 73-85.

Sanctis G. D., Sarti A., Scarparo G. and Tubaro S. (2005). Automatic modeling and authoring of nonlinear interactions between acoustic objects, Proceedings of 4th International Workshop on Multidimensional Systems (NDS 2005), Wuppertal, Germany. Published on CD-ROM.

Sanctis G. D., Sarti A. and Tubaro S. (2003). Automatic synthesis strategies for object-based dynamical physical models in musical acoustics, Proceedings of the Conference on Digital Audio Effects (DAFx-03), London, UK, pp. DAFX-1-DAFX-6.

Sarti A. and Sanctis G. D. (2006). Memory extraction from dynamic scattering junctions in wave digital structures, Signal Processing Letters13(12): 729-732.

Smith J. O. (2007). Physical audio signal processing: For virtual musical instruments and digital audio effects, Technical report, Stanford University Center for Computer Research in Music and Acoustics, available at: http://ccrma.stanford.edu/~jos/pasp/pasp.html

Smith J. O. (1998). Principles of digital waveguide models of musical instruments, in M. Kahrs and K. Brandenburg, (Eds.), Applications of Digital Signal Processing to Audio and Acoustics, Kluwer Academic Publishers, Norwell, MA, USA, pp. 417-466.

Trautmann L. and Rabenstein R. (2003). Digital Sound Synthesis by Physical Modeling of Musical Instruments using Functional Transformation Models, Kluwer Academic/Plenum Publishers, Boston, MA.

Välimäki V., Pakarinen J., Erkut C. and Karjalainen M. (2006). Discrete time modeling of musical instruments, Reports on Progress in Physics69(1): 1-78.

Vergez C. and Rodet X. (1997). Comparison of real trumpet playing, latex model of lips and computer model, Proceedings of the 1997 International Computer Music Conference, Thessaloniki, Greece. Published on CD-ROM.

Vollmer M. (2005). Automatic generation of wave digital structures for numerically integrating linear symmetric hyperbolic PDEs, Multidimensional Systems and Signal Processing16(4): 369-396.

International Journal of Applied Mathematics and Computer Science

Journal of the University of Zielona Góra

Journal Information


IMPACT FACTOR 2017: 1.694
5-year IMPACT FACTOR: 1.712

CiteScore 2017: 2.20

SCImago Journal Rank (SJR) 2017: 0.729
Source Normalized Impact per Paper (SNIP) 2017: 1.604

Mathematical Citation Quotient (MCQ) 2017: 0.13

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 6
PDF Downloads 40 40 5