Hermite Spline Interpolation on Patches for Parallelly Solving the Vlasov-Poisson Equation

Open access

Hermite Spline Interpolation on Patches for Parallelly Solving the Vlasov-Poisson Equation

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the method with up to 64 processors. This work is a part of the CALVI project.

Bermejo R. (1991): Analysis of an algorithm for the Galerkin-characteristic method.Numerische Mathematik, Vol. 60, pp. 163-194.

Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space.Journal of Computational Physics, Vol. 191, pp. 341-376.

Birdsall C.K. and Langdon A.B.: Plasma Physics via Computer Simulation. Bristol: Institute of Physics Publishing.

Bouchut F., Golse F. and Pulvirenti M. (2000): Kinetic Equations and Asymptotic Theory. Paris: Gauthier-Villars.

DeBoor C. (1978): A Practical Guide to Splines. New-York: Springer.

Campos-Pinto M. and Merhenberger M. (2004): Adaptive Numerical Resolution of the Vlasov Equation.

Cheng C.Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space.Journal of Computational Physics, Vol. 22, p. 330.

Coulaud O., Sonnendrücker E., Dillon E., Bertrand P. and Ghizzo A. (1999): Parallelization of semi-Lagrangian Vlasov codes.Journal of Plasma Physics, Vol. 61, pp. 435-448.

Feix M.R., Bertrand P. and Ghizzo A. (1994): Title? In: Kinetic Theory and Computing, (B. Perthame, Ed.).

Filbet F., Sonnendrücker E. and Bertrand P. (2001): Conservative numerical schemes for the Vlasov equation.Journal of Computational Physics, Vol. 172, pp. 166-187.

Filbet F. and Sonnendrücker E. (2003): Comparison of Eulerian Vlasov solvers.Computer Physics Communications, Vol. 151, pp. 247-266.

Filbet F. and Violard E. (2002): Parallelization of a Vlasov Solver by Communication Overlapping. Proceedings PDPTA.

Glassey R.T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM.

Ghizzo A., Bertrand P., Begue M.L., Johnston T.W. and Shoucri M. (1996): A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator.IEEE Transactions on Plasma Science, Vol. 24.

Ghizzo A., Bertrand P., Shoucri M., Johnston T.W., Filjakow E. and Feix M.R. (1990): A Vlasov code for the numerical simulation of stimulated Raman scattering.Journal of Computational Physis, Vol. 90, pp. 431-457.

Grandgirard V., Brunetti M., Bertrand P., Besse N., Garbet N., Ghendrih P., Manfredi G., Sarrazin Y., Sauter O., Sonnendrücker E., Vaclavik J. and Villard L. (2006): A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation.Journal of Computational Physics, Vol. 217, pp. 395-423.

Gutnic M., Haefele M., Paun I. and Sonnendrücker E. (2004): Vlasov simulation on an adaptive phase space grid.Computer Physical Communications, Vol. 164, pp. 214-219.

Hammerlin G. and Hoffmann K.H. (1991): Numerical Mathematics, New-York: Springer.

Kim C.C. and Parker S.E. (2000): Massively parallel threedimensional toroidal gyrokinetic flux-tube turbulence simulation.Journal of Computational Physics, Vol. 161, pp. 589-604.

McKinstrie C.J., Giacone R.E. and Startsev E.A. (1999): Accurate formulas for the Landau damping rates of electrostatic waves.Physics of Plasmas, Vol. 6, pp. 463-466.

Manfredi G. (1997): Long time behaviour of strong linear Landau damping.Physical Review Letters, Vol. 79.

Shoucri M. and Knorr G. (1974): Numerical integration of the Vlasov equation.Journal of Computational Physics, Vol. 14, pp. 84-92.

Sonnendrücker E., Filbet F., Friedman A., Oudet E. and Vay J.L. (2004): Vlasov simulation of beams on a moving phase space grid.Computer Physics Communications, Vol. 164, pp. 390-395.

Sonnendrücker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equations.Journal of Computational Physics, Vol. 149, pp. 201-220.

Staniforth A. and Coté J. (1991): Semi-Lagrangian integration schemes for atmospheric models - A review.Monthly Weather Review, Vol. 119, pp. 2206-2223.

International Journal of Applied Mathematics and Computer Science

Journal of the University of Zielona Góra

Journal Information


IMPACT FACTOR 2017: 1.694
5-year IMPACT FACTOR: 1.712

CiteScore 2017: 2.20

SCImago Journal Rank (SJR) 2017: 0.729
Source Normalized Impact per Paper (SNIP) 2017: 1.604

Mathematical Citation Quotient (MCQ) 2017: 0.13

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 22
PDF Downloads 58 58 13