Modeling And Parameter Identification Of Vibrations Of A Double Torsion Pendulum With Friction

Open access

Abstract

The purpose of this paper is to investigate a double torsion pendulum with planar frictional contact. The single torsion pendulum with one-degree-of-freedom is an angular equivalent of the linear harmonic oscillator. The second degree of freedom has been obtained by adding a free body to the inverted single torsion pendulum. The free body’s angular displacement is caused by frictional forces appearing in the interface (contact zone) between the free body and the pendulum column’s head kinematically excited at its base by a mechanism with torsion spiral spring. An experimental station has been set up and run to find most unknown parameters of the pendulum from the time series of state variables taken as inputs to the Nelder-Mead method of identification. The obtained results proved significant usability of the identification method in the case of numerical simulation of the pendulum’s dynamical model. It has not been satisfactorily proved in the case of time characteristics coming from a real system that exhibits also some unrecognized physical effects.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Awrejcewicz J. Olejnik P. (2005) Analysis of dynamic systems with various friction laws Applied Mechanics Reviews – Transactions of ASME Vol. 58 (6) 389-411.

  • 2. Awrejcewicz J. Olejnik P. (2005) Friction pair modeling by 2-dof system: numerical and experimental investigations International Journal of Bifurcation and Chaos Vol. 15 (6) 1931-1944.

  • 3. Awrejcewicz J. Olejnik P. (2007) Occurrence of stick-slip phenomenon Journal of Theoretical and Applied Mechanics Vol. 45(1) 33-40.

  • 4. Bassan M. De Marchi F. Marconi L. Pucacco G. Stanga R. Visco M. (2013) Torsion pendulum revisited Physics Letters A Vol. 377 (25-27) 1555-1562.

  • 5. Cadoni M. De Leo R. Gaeta G. (2013) Solitons in a double pendulums chain model and DNA roto-torsional dynamics Journal of Nonlinear Mathematical Physics Vol. 14(1) 128-146.

  • 6. Coullet P. Gilli J.-M. Rousseaux G. (2009) On the critical equilibrium of the spiral spring pendulum Proceedings of the Royal Society A Vol. 466 407-421.

  • 7. De Marchi F. Pucacco G. Bassan M. De Rosa R. Di Fiore L. Garufi F. Grado A. Marconi L. Stanga R. Stolzi F. Visco M. (2013) A quasi-complete mechanical model for a double torsion pendulum Physical Review D Vol. 87(122006).

  • 8. Liu X. Vlajic N. Long X. Meng G. Balachandran B. (2014) State-dependent delay influenced drill-string oscillations and stability analysis ASME Journal of Vibration and Acoustics Vol. 136(5) 051008.

  • 9. Luersen M.A. Le Riche R. (2004) Globalized Nelder–Mead method for engineering optimization Computers & Structures Vol. 82(23-26) 2251-2260.

  • 10. Miao C. Luo W. Ma Y. Liu W. Xiao J. (2014) A simple method to improve a torsion pendulum for studying chaos European Journal of Physics Vol. 35 055012.

  • 11. Michalak M. Krucińska I. (2004) Studies of the effects of chemical treatment on bending and torsional rigidity of bast fibres Materials Science Vol. 10(2) 182-185.

  • 12. Skup Z. (2002) Structural friction and viscous damping in a frictional torsion damper Journal of Theoretical and Applied Mechanics Vol. 2(40) 497-511.

Search
Journal information
Impact Factor


CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.243
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 166 3
PDF Downloads 130 71 4