Frictional Heating During Sliding of two Semi-Spaces with Arbitrary Thermal Nonlinearity

Open access

Abstract

Analytical and numerical solution for transient thermal problems of friction were presented for semi limited bodies made from thermosensitive materials in which coefficient of thermal conductivity and specific heat arbitrarily depend on the temperature (materials with arbitrary non-linearity). With the constant power of friction assumption and imperfect thermal contact linearization of nonlinear problems formulated initial-boundary thermal conductivity, using Kirchhoff transformation is partial. In order to complete linearization, method of successive approximations was used. On the basis of obtained solutions a numerical analysis of two friction systems in which one element is constant (cermet FMC-845) and another is variable (grey iron ChNMKh or aluminum-based composite alloy AL MMC) was conducted

1. Abdel-Aal H. A. (1997), On the distribution of friction-induced heat in the dry sliding of metallic solid pairs, Int. Comm. Heat Mass Trans., Vol. 24, 989-998.

2. Abdel-Aal H. A., Smith S. T. (1998a), Thermal compatibility of metallic pairs in sliding contact, Int. Comm. Heat Mass Trans., Vol. 25, 599-608.

3. Abdel-Aal H. A., Smith S. T. (1998b), On friction-induced temperatures of rubbing metallic pairs with temperature-dependent thermal properties, Wear, Vol. 216, 41-59.

4. Abdel-Aal H. A., Smith S.T., Patten J. A. (1997), On the development of surface temperatures in precision single-point diamond abrasion of semiconductors, Int. Comm. Heat Mass Trans., Vol. 24, 1131-1140.

5. Barber J.R. (1970), The conduction of heat from sliding solids, Int. J. Heat. Mass Tran., Vol. 13, 857-869.

6. Barber J. R. (1976), Some thermoelastic contact problems involving frictional heating, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 29, 1-13.

7. Bateman H., Erdelyi A. (1954), Tables of integral transforms, V. 1, McGraw-Hill, New York.

8. Chichinadze A. V., Matveevski R. M., Braun E. P. (1986), Materials in tribotechnics non-stationary processes, Nauka, Moscow (in Russian).

9. Chichinadze A. V., Braun E. D., Ginsburg A. G., Ignat’eva Z. V. (1979), Calculation, Test and Selection of Frictional Couples, Nauka, Moscow (in Russian).

10. Evtushenko O, Kuciej M., Och E. (2014), Influence of the thermal sensivity of materials on the temperature at friction, Mat. Sci., Vol. 50, 117-122.

11. Grylitsky D. V. (1996), Thermoelastic contact problems in tribology, A Textbook, Institute of the Contents and Methods of Education, Ministry of Education of the Ukraine, Kiev.

12. Kim S. W., Park K., Lee S. H., Kang K. H., Lim K. T. (2008), Thermophysical properties of automotive metallic brake disk materials, Int. J. Thermophys., Vol. 29, 2179-2188.

13. Kirchhoff G. R. (1894), Heat theory lectures B.G. Teubner, Leipzig (in Germany).

14. Kuciej M. (2012), Analytical models of transient frictional heating, Oficyna Wydawnicza Politechniki Białostockiej, Białystok (in Polish).

15. Kushnir R. M., Popovych V. S. (2011), Heat conduction problems of thermosensitive solids under complex heat exchange, Heat conduction - Basic Research, V. Vikhrenko Ed., In Tech, Croatia, 131-154.

16. Nosko A. L., Belyakov N. S., Nosko A. P. (2009), Application of the generalized boundary condition to solving thermal friction problems, J. Frict. Wear, Vol. 30, 615-625.

17. Och E. (2013), Frictional Heating During Sliding of Two Semi-Spaces with Simple Thermal Nonlinearities, Acta Mech. Autom., Vol. 7, 236-240.

18. Podstrigach Ya. S. (1963), The temperature field in a system of rigid bodies coupled by thin interface, Inzh.-Fiz. Zh., Vol. 6, No 10, 129-136, (in Russian).

19. Sazonov V. S. (2008), Nonideal contact problem of nonstationary heat conduction for two half-spaces, J. Eng. Phys. Thermophys., Vol. 81, 397-408.

20. Sneddon I. N. (1972), The use of integral transforms, McGraw-Hill, New York.

21. Yevtushenko A., Kuciej M., Och E. (2014a), Effect of Thermal Sensitivity of Materials of Tribojoint on Friction Temperature, J. Frict. Wear, Vol. 35, 77-83.

22. Yevtushenko A., Kuciej M., Och E. (2014b), Influence of thermal sensitivity of the pad and disk materials on the temperature during braking, Int. Comm. Heat Mass Transf., Vol. 55, 84-92.

23. Yevtushenko A., Kuciej M., Och E. (2014c), Temperature in thermally nonlinear pad-disk brake system, Int. Comm. Heat Mass Transf., Vol. 57, 274-281.

24. Yevtushenko A., Kuciej M., Och E. (2014d), Some methods for calculating the temperature during friction of the thermosensitive materials, Num. Heat Transf., Vol. 67, 696-718.

25. Yevtushenko A. A., Kuciej M. (2012), One-dimensional thermal problem of friction during braking: The history of development and actual state, Int. J. Heat Mass Tran., Vol. 55, 4118-4153.

26. Yevtushenko A. A., Kuciej M., Yevtushenko O. (2013), The boundary conditions on the sliding surface in one-dimensional transient heat problem of friction, Int. J. Heat Mass Trans., Vol. 59, No 1, 1-8.

27. Yevtushenko A. A., Kuciej M., Yevtushenko O. (2014), The asymptotic solutions of heat problem of friction for a three-element tribosystem with generalized boundary conditions on the surface of sliding, Int. J. Heat Mass Trans., Vol. 70, 128-136.

28. Yune Y. G., Bryant M. D. (1988), Transient nonlinear thermal runaway effects in carbon graphite electrical brushers, IEEE Trans. on Components, Hybrids, and Manufacturing Technology, Vol. 11, 91-100.

29. Yune Y. G., Bryant M. D. (1989), Thermal evolution of hot spots in thermally nonlinear carbon graphite sliders, Trans. ASME. J. Tribology, Vol. 111, 591-596.

Acta Mechanica et Automatica

The Journal of Bialystok Technical University

Journal Information


CiteScore 2018: 0.77
SCImago Journal Rank (SJR) 2018: 0.243
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 125 18
PDF Downloads 56 49 1