Open access


Rapid temperature change in components of the sliding systems induces thermal stresses due to thermal expansion. This effect is particularly evident in disc brakes working under high thermal loads. This paper deals with the finite element modelling of frictional heating process in disc brakes and clutches to study the temperature and stress distributions during operation

1. Bagnoli F., Dolce F., Bernabei M. (2009), Thermal fatigue cracks of fire fighting vehicles gray iron brake discs, Engineering Failure Analysis, Vol. 16, 152-163.

2. Balakin V.A., Sergienko V.P. (1999) Heat calculations of brakes and friction units, MPRI of NASB, Gomel, (in Russian).

3. Chichinadze A.V. (1967), Calculation and investigation of external friction during braking, Nauka, Moscow, (in Russian).

4. Chichinadze A.V., Braun E.D., Ginsburg A.G., Ignat’eva E.V. (1979), Calculation, test and selection of frictional couples, Nauka, Moscow, (in Russian).

5. Choi J-H., Lee I. (2003), Transient thermoelastic analysis of disk brakes in frictional contact, Journal of Thermal Stresses, Vol. 26, No. 3, 223-244.

6. Choi J-H., Lee I. (2004), Finite element analysis of transient thermoelastic behaviors in disk brakes, Wear, Vol. 257, 47-58.

7. Collignon M., Cristol A-L., Dufrénoy P., Desplanques Y., Balloy D. (2013), Failure of truck brake discs: A coupled numerical- experimental approach to identifying critical thermomechanical loadings, Tribology International, Vol. 59, 114-120.

8. Dufrénoy P. (2004), Two-/three-dimensional hybrid model of the thermomechanical behaviour of disc brakes, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Vol. 218, No. 1, 17-30.

9. Dufrénoy P., Weichert D. (2003), A thermomechanical model for the analysis of disc brake fracture mechanisms, Journal of Thermal Stresses, Vol. 26, 815-828.

10. Evtushenko O.O., Ivanyk E.H., Horbachova N.V. (2000), Analytic methods for thermal calculation of brakes (review), Materials Science, Vol. 36, No. 6, pp. 857-862.

11. Gao C.H., Huang J.M., Lin X.Z., Tang X.S. (2007), Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling, ASME Journal of Tribology, Vol. 129, No. 3, 536-543.

12. Kim D.-J., Lee Y.-M., Park J.-S., Seok C.-S. (2008), Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface, Materials Science and Engineering: A, Vol. 483-484, 456-459.

13. Lim D.-W., Kim T.-H., Choi J.-H., Kweon J.-H., Park H.-S. (2008), A study of the strength of carbon-carbon brake disks for automotive applications, Composite Structures, Vol. 86, No. 1-3, 101-106.

14. Mackin T.J., Noe S.C., Ball K.J., Bedell B.C., Bim-Merle D.P., Bingaman M.C., Bomleny D.M., Chemlir G.J., Clayton D.B., Evans H.A., Gau R., Hart J.L., Karney J.S., Kiple B.P., Kaluga R.C., Kung P., Law A.K., Lim D., Merema R.C., Miller B.M., Miller T.R., Nielson T.J., O'Shea T.M., Olson M.T., Padilla H.A., Penner B.W., Penny C., Peterson R.P., Polidoro V.C., Raghu A., Resor B.R., Robinson B.J., Schambach D., Snyder B.D., Tom E., Tschantz R.R., Walker B.M., Wasielewski K.E., Webb T.R., Wise S.A., Yang R.S., Zimmerman R.S. (2002), Thermal cracking in disc brakes, Engineering Failure Analysis, Vol. 9, 63-76.

15. Matysiak S.J., Yevtushenko A.A. (2001) On heating problems of friction, Journal of Theoretical and Applied Mechanics, Vol. 3, No. 39, 577-588.

16. Rossmanith H.P., Loibnegger F., Huber R. (2006), Thermomechanical fatigue fracture due to repeated braking of railway wheels, Materials Science, Vol. 42, No. 4, 40-48.

17. Sakamoto H., Hirakawa K. (2005), Fracture analysis and material improvement of brake discs, JSME International Journal Series A, Vol. 48, No. 4, 458-464.

18. Scieszka S., Zolnierz M. (2007a), The effect of the mine winder disc brake's design feature on its thermoelastic instability. Part I. Set-up for finite element modelling and numerical model verification, Problems of Machines Operation and Maintenance, Vol. 42, No. 3, 111-124.

19. Scieszka S., Zolnierz M. (2007b), The effect of the mine winder disc brake’s design feature on its thermoelastic instability. Part II. Finite element simulation, Problems of Machines Operation and Maintenance, Vol. 42, No. 4, 183-193.

20. Yevtushenko A.A., Grzes P. (2010), The FEM-modeling of the frictional heating phenomenon in the pad/disc tribosystem (a review), Numerical Heat Transfer, Part A: Applications, Vol. 58, No. 3, 207-226.

21. Yevtushenko A.A., Grzes P. (2014), FEM-modeling of frictional heating during braking, Encyclopedia of Thermal Stresses, Vol. 4, Springer Science+Business Media Dordrecht, DOI 10.1007/978-94-007-2739-7.

22. Yildiz Y., Duzgun M. (2010), Stress analysis of ventilated brake discs using the finite element method, International Journal of Automotive Technology, Vol. 11, No. 1, 133-138.

23. Zagrodzki P. (1985), Numerical analysis of temperature fields and thermal stresses in the friction discs of a multidisc wet clutch, Wear, Vol. 101, 255-271.

24. Zagrodzki P. (1990), Analysis of thermomechanical phenomena in multidisc clutches and brakes, Wear, Vol. 140, No. 2, 291-308.

25. Zhao S., Hilmas G.E., Dharani L.R. (2008), Behavior of a composite multidisk clutch subjected to mechanical and frictionally excited thermal load, Wear, Vol. 264, 1059-1068.

Acta Mechanica et Automatica

The Journal of Bialystok Technical University

Journal Information

CiteScore 2017: 1.07

SCImago Journal Rank (SJR) 2017: 0.361
Source Normalized Impact per Paper (SNIP) 2017: 0.917


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 174 27
PDF Downloads 66 66 8