AIR FLOW ANALYSIS FOR ELECTRICAL MOTOR'S COOLING SYSTEM WITH AUTODESK SIMULATION CFD 2013 PROGRAM

Open access

Abstract

In the article the analysis of airflow through electrical motor was conducted and optimal design solution was chosen in order to increase cooling efficiency. Numerical simulations allow to determine the areas of temperature occurrence which may have destructive influence on electrical motor parts and on its safe operation. The numerical calculations of airflow was carried out for two different types of fans as well as for two different housings. An analysis of the construction was carried out by CFD method using Autodesk Simulation CFD 2013. Community results of the analysis, we can conclude that the better solution for machines with fixed direction of rotation is to use instead of the radial the axial fan. For axial fan the motor temperature in the same condition was lower by about 5°C.

References
  • 1. Będkowski B., Madej J. (2012), The potential of 3D FEM and CFD methods for cooling systems analysis of electrical machines - the premises, Zeszyty Problemowe Maszyny Elektryczne, BOBRME Komel, No. 3, 139-143.

  • 2. Boglietti A., Cavagnino A., Staton D., Shanel M., Mueller M., Mejuto C. (2009), Evolution and Modern Approaches for Thermal Analysis of Electrical Machine, IEEE Trans. Ind. Electron., Vol. 56, 3, 871-882.

  • 3. Chang C.C., Kuo Y.F., Wang J.C., Chen S.L.(2010), Air cooling for a large-scale motor, Applied Thermal Engineering, Vol. 30, 11-12, 1360-1368.

  • 4. Dorrell D. G., Staton D. A., Hahout J., Hawkins D., McGilp M. I. (2006), Linked Electromagnetic and Thermal Modelling of a Permanent Magnet Motor, PEMD Servo Motor Thermal Analysis.

  • 5. Hongmin Li. (2009), Flow driven by a stamped metal cooling fan - Numerical model and validation, Experimental Thermal and Fluid Science, Vol. 33, 4, 683-694.

  • 6. Hongmin Li. (2010), Cooling of a permanent magnet electric motor with a centrifugal impeller, International Journal of Heat and Mass Transfer, Vol. 53, 4, 31, 797-810.

  • 7. Kelly W., Gigas B. (2003), Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime, Chemical Engineering Science, Vol. 58, 10, 2141-2152.

  • 8. Murthy B.N., Deshmukh N.A., Patwardhan A.W., Joshi J.B. (2007), Hollow self-inducing impellers: Flow visualization and CFD simulation, Chemical Engineering Science, Vol. 62, 14, 3839-3848.

  • 9. Lim C.H., Airoldi G., Bumby J.R., Dominy R.G., Ingram G.I., Mahkamov K., Brown N.L., Mebarki A., Shanel M. (2010), Experimental and CFD investigation of a lumped parameter thermal model of a single-sided, slotted axial flux generator, International Journal of Thermal Sciences, Vol. 49, 9, 1732-1741.

  • 10. Szczypior J., Jakubowski R. (2009), Calculation of heat storage in the coreless machine with permanent magnet with direct cooling, Zeszyty Problemowe Maszyny Elektryczne, BOBRME Komel, No. 83, 59-66.

Acta Mechanica et Automatica

The Journal of Bialystok Technical University

Journal Information


CiteScore 2016: 0.50

SCImago Journal Rank (SJR) 2016: 0.193
Source Normalized Impact per Paper (SNIP) 2016: 0.423

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 36
PDF Downloads 12 12 10