Comparison Analysis of Cockroft – Latham Criterion Values of Commercial Plasticine and C45 Steel

Open access


The paper presents and compares the results of theoretical and experimental research in the field of cracking of model material (commercial plasticine) and C45 steel in hot forming conditions. The aim of the research was to determine the limit values of the Cockroft-Latham integral for both materials. The presented research methodology includes experimental tests (tensile tests) and numerical simulations carried out in the DEFORM-3D program. For laboratory tests, axially symmetric samples made of C45 steel and model material were used. On the basis of the obtained experimental and numerical results, a comparative analysis of both materials was carried out.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Altan T. Breitling J. Taupin E. Wu W-T. (1996) Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments Journal of Materials Processing Technology 58 68-78.

  • 2. Altan T. Vazquez V. (2000) New Concepts in die design - physical and computer modeling applications Journal of Materials Processing Technology 98 212-223.

  • 3. Antolik Ł. (2014) Methodology of Fatigue Cracks Detection in Railway Axles in Comparison with European Standards Requirements (in Polish) Problemy kolejnictwa 165 7-19.

  • 4. Arikawa T. Kakimoto H. (2014) Prediction of surface crack in hot forging by numerical simulation Procedia Engineering 81 474-479.

  • 5. Asai K. Kitamura K. (2014) Estimation of frictional property of lubricants for hot forging of steel using low-speed ring compression test Procedia Engineering 811970-1975.

  • 6. Assempour A. Farahani S. Naybodi A. (2012). A general methodology for bearing design in non-symmetric T-shaped sections in extrusion process Journal of Materials Processing Technology 212(1) 249-261.

  • 7. Assempour A. Razi S. (2002). Determination of load and strain-stress distributions in hot closed die forging using the plasticine modeling technique Archive of SID 2(15) 167-172.

  • 8. Bariani P.F. Bylya O. Ghiotti A. Novella M.F. (2014) Modelling of AA6082 Ductile Damage Evolution under Hot Rolling Conditions Procedia Engineering 81 221-226.

  • 9. Bruschi S. Davey K. Krishnamurthy B. (2017) Physical modelling for metal forming processes Procedia Engineering 207 1075-1080.

  • 10. Charoesunk K. Panich S. Uthaisangsuk V. (2017). Damage initiation and fracture loci for advances high strength steel sheets taking into account anisotropic behaviour. Journal of Materials Processing Technology 248 218-235.

  • 11. Cherkashina T. Mazur I. (2012) Mathematical and Physical Modeling of Soft Cobbing Process of Hot Rolling Steels Material Science Forum 704-705 160-164.

  • 12. Cockroft M.G. Latham D.J (1968). Ductility and the workability of metals Journal of the Institute of Metals 96 33-39.

  • 13. Derpenski L. Seweryn A.Szusta J. (2018) Damage accumulation and ductile fracture modeling of notched specimens under biaxial loading at room temperature International Journal of Solids and Structures 134 1-19.

  • 14. Dziubinska A. Gontarz A. (2015) A new method for producing magnesium alloy twin-rib aircraft brackets Aircraft Engineering and Aerospace Technology 2(87) 180-188.

  • 15. Eivani A. R. Jafarian H. R.Mirghasemi S. M. Seyedein S. H. (2018) A comparison between routine vs. normalized Cockroft-Latham Fracture criteria for prediction of fracture during equal channel angular pressing Engineering Fracture Mechanics 199 721-729.

  • 16. Fu M. W. Li H. Lu J. Yang H. (2011) Ductile fracture: Experiments and computations International Journal of Plasticity 27 147-180.

  • 17. Fuertes J. P. León J. Luis C. J. Luri R. Puertas I. Salcedo D. (2015) Comparative study of the damage attained with different specimens by FEM Procedia Engineering 132 319-325.

  • 18. Galan I. S. Perig A.V. (2017) The experimental verification of the known flow line models describing local flow during ECAE (ECAP) Letters on materials 7(3) 209-217.

  • 19. Gontarz A. Piesiak J. (2010) Crack model according to Cockroft-Latham criterion for magnesium alloy MA2 in hot forming conditions (in Polish) XXI(4) 217-227.

  • 20. Gontarz A. Winiarski G. (2015) Numerical and experimental study of producing flanges on hollow parts by extrusion with a movable sleeve Archives of Metallurgy and Materials 60 1917-1921.

  • 21. Kowalczyk L. (1995) Physical modeling of metal forming processes (in Polish)Technologii Eksploatacji Radom.

  • 22. Lis K. Pater Z. Walczuk P. Wojcik L.(2018) Preliminary analysis of a rotary compression test Adv. Sci. Technol. Res. J 12 (2) 77-82.

  • 23. Lis K. Pater Z. Wojcik L.(2016) Plastometric tests for plasticine as physical modelling material Open Engineering 6 653-659.

  • 24. Mizuno K. Komori K. (2009) Study on plastic deformation in cone-type rotary piercing process using model piercing mill for modeling clay Journal of Materials Processing Technology 209 4994-5001.

  • 25. Moon Y.H. Van Tyne C.J. (2000) Validation via FEM and plasticine modeling of upper bound criteria of a process induced side surface defect in forgings Journal of Materials Processing Technology 99 185-196

  • 26. Pater Z. Wojcik L.(2017) Physical analysis of cross-wedge rolling process of a stepped shaft Adv. Sci. Technol. Res. J. 11 (4) 60-67.

  • 27. Pieres F. M. A. Song N. Wu S. (2016) Numerical analysis of damage evolution form materials with tension - compression asymmetry Procedia Structural Integrity 1 273-280.

  • 28. Rasty J. Sofuoglu H. (2000) Flow behaviour of plasticine used in physical modeling of metal forming process Tribology International 33 523-529.

Journal information
Impact Factor

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.243
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 147 3
PDF Downloads 219 219 30