Magnetostatic Analysis of a Pinch Mode Magnetorheological Valve

Open access


The study deals with the pinch mode of magnetorheological (MR) fluids’ operation and its application in MR valves. By applying the principle in MR valves a highly non-uniform magnetic field can be generated in flow channels in such a way to solidify the portion of the material that is the nearest to the flow channel’s walls. This is in contrary to well-known MR flow mode valves. The authors investigate a basic pinch mode valve in several fundamental configurations, and then examine their magnetic circuits through magnetostatic finite-element (FE) analysis. Flux density contour maps are revealed and basic performance figures calculated and analysed. The FE analysis results yield confidence in that the performance of MR pinch mode devices can be effectively controlled through electromagnetic means.

1. Boelter R., Janocha H. (1998). Performance of long-stroke and low-stroke MR fluid dampers, 5th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 303-313.

2. Carlson J. D., Goncalves F., Catanzarite D., Dobbs D. (2007), Controllable magnetorheological fluid valve, devices, and methods, U.S. Patent Application No. 11/844, 548.

3. Gołdasz N., Sapiński B. (2015), Insight into Magnetorheological Shock Absorbers, Springer, Heidelberg.

4. Goncalves F. D., Carlson J. D. (2009), An alternate operation mode for MR fluids—magnetic gradient pinch, Journal of Physics, Conference Series, 149, 012050.

5. Jolly M. R., Bender J. W., Carlson J. D. (1999), Properties and applications of commercial magnetorheological fluids, Journal of Intelligent Material Systems and Structures, 10(1), 5-13.

6. Jolly M. R., Carlson J. D. (1996), Controllable squeeze film damping using magnetorheological fluids, Proceedings of the 5th International Conference on New Actuators, Bremen, 333–336.

7. Simms N. D., Stanway R., Johnson A. R., Mellor P. (2001), Design, testing, and model validation of an MR squeeze-flow vibration damper, SPIE's 8th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 111-120.

8. Wereley N.M., Cho J.U., Choi Y.-T., Choi S.B. (2007), Magnetorheological dampers in shear mode, Smart Materials and Structures, 17(1), 015022

9. Yao G. Z., Yap F. F., Chen G., Li W., Yeo S. H. (2002), MR damper and its application for semi-active control of vehicle suspension system, Mechatronics, 12(7), 963-973.

10. Yazid I. I. M., Mazlan S. A., Kikuchi T., Zamzuri H., Imaduddin F. (2014), Design of magnetorheological damper with a combination of shear and squeeze modes, Materials and Design (1980-2015), 54, 87-95.

Acta Mechanica et Automatica

The Journal of Bialystok Technical University

Journal Information

CiteScore 2017: 1.07

SCImago Journal Rank (SJR) 2017: 0.361
Source Normalized Impact per Paper (SNIP) 2017: 0.917


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 179 177 18
PDF Downloads 279 278 59