Assessment of Micro and Macro Nutrients Contents in the Turkish Faba Bean Germplasm

Tolga Karaköy 1 , Ahmet Demirbaş 1 , Faruk Toklu 2 , Nevcihan Gürsoy 3 , Eylem Tugay Karagöl 4 , Damla Uncuer 4 , and Hakan Özkan 5
  • 1 Department of Crop and Animal Production, Vocational School of Sivas, University of Cumhuriyet,, Sivas, Turkey
  • 2 Department of Field Crops, Faculty of Agriculture, University of Cukurova, Balcalı-, Adana, Turkey
  • 3 Faculty of Engineering, Department of Food Engineering, University of Cumhuriyet,, Sivas, Turkey
  • 4 Aegean Agricultural Research Institute,, İzmir, Turkey
  • 5 Department of Field Crops, Faculty of Agriculture, University of Cukurova, Balcalı-, Adana, Turkey


Faba bean (Vicia faba L.) is one of the most important legume crop and cultivated nearly all parts of the world. Present study was aimed to investigate the variation in the micro and macronutrients concentration in the Turkish faba bean germplasm. A total of 200 landraces and 3 commercial cultivars were collected from the different geographical regions of Turkey. Study was conducted at the research and experimental area of Department of Crop and Animal Production, Vocational School of Sivas, University of Cumhuriyet, Sivas, Turkey in 2016. Result of this study reflected higher level of diversity for studies nutrients; (N) (5.21-8.15 %), phosphorus (P) (0.1-0.98 %), potassium (K) (0.94-5.6 %), magnesium (mg) (0.32-0.42), calcium (Ca) (0.50-1.50), copper (Cu) (8.13-34.23 mg kg-1), zinc (Zn) (28.42-64.33 mg kg-1), iron (Fe) (44.86-128.53 mg kg-1), and manganese (Mn) (16.56-35.76 mg kg-1). Average concentrations of micro and macronutrients were found higher in the landraces as compared to the commercial cultivars. Principal component analysis grouped the studied germplasm into two groups on the basis of their Zn concentrations. Results from this study expressed the presence of high range of diversity in the Turkish faba bean germplasm for micro and macronutrient elements. Findings of this study will serves as starting point for the development of improved faba bean varieties through conventional and modern breeding technologies and these variations will be helpful for the identification of linked markers through the genome wide association studies and identifying diverse parents for quantitative trait locus (QTL) mapping.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baloch F. S., Karakoy T., Demirbaş A., Toklu F., Ozkan H., Hatipoğlu R., 2014. Variation of Some Seed Mineral Contents in Open Pollinated Faba bean (Vicia faba L.) Landraces From Turkey. Turk. J. Agric. For. 38:591-602.

  • Bonfil D.J., Kafkafi U., 2000. Wild wheat adaptation in different soil ecosystems as expressed in the mineral concentration of the seeds. Euphytica 114: 123-134.

  • Bremner J. M., 1965. Total nitrogen. Methods of soil analysis. Part 2. Chemical and microbiological properties. (methodsofsoilanb), 1149-1178.

  • Cakmak I., 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302: 1-17.

  • Cakmak I., Pfeiffer W.H., McClafferty B., 2010. Biofortification of durum wheat with zinc and iron. Cereal Chem 87: 10-20.

  • Chatzav M., Peleg Z., Özturk L., Yazici A., Fahima T., Cakmak I., Saranga Y., 2010. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105: 1211-1220.

  • Duc G., Bao S., Baum M., Redden B., Sadiki M., Suso M.J., Vishniakova M., Zong X., 2010. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Res 115: 270-278.

  • Garvin D.F., Welch R.M., Finley J.W., 2006. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86: 2213-2220.

  • Gómez-Galera S., Rojas E., Sudhakar D., Zhu C., Pelacho A.M., Capell T., Chritou P., 2010. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19: 165-180.

  • Grusak M.A., Çakmak I., 2005. Methods to improve the crop-delivery of minerals to humans and livestock. In: Broadley MR, White PJ, editors. Plant Nutritional Genomics. Oxford, UK: Blackwell Publishing, pp. 265-286.

  • Jiang S.L., Wu J.G., Thang N.B., Feng Y., Yang X.E., Shi C.H., 2008. Genotypic variation of mineral elements contents in rice (Oryza sativa L.). Eur Food Res Technol 228: 115-122.

  • Karaköy T., Baloch F.S., Toklu F., Özkan H., 2014. Variation for selected morphological and qualityrelated traits among 178 faba bean landraces collected from Turkey. Plant Genetic Resources: Characterization and Utilization 12: 5-13.

  • Karaköy T., Erdem H., Baloch F.S., Toklu F., Eker S., Kilian B., Özkan H., 2012. Diversity of macro- and micronutrients in the seeds of lentil landraces. The Scientific World Journal 2012: 1-9.

  • Khan M.A., Fuller M.P., Baloch F.S., 2008. Effect of soil applied zinc sulphate on wheat (Triticum aestivum L.) grown on a calcareous soil in Pakistan. Cereal Res Commun 36: 571-582.

  • Link W., Abdelmula A.A., Von Kittlitz E., Bruns S., Riemer H., Stelling D., 1999. Genotypic variation for drought tolerance in Vicia faba. Plant Breeding 118: 477-483.

  • Menkir A., 2008. Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem 110: 454-464.

  • Özer S., Karaköy T., Toklu F., Baloch F.S., Kilian B., Özkan H., 2011. Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica 175: 237-249.

  • Özer S., Tümer E., Baloch F.S., Karaköy T., Toklu F., Özkan H., 2012. Variation for nutritional and cooking properties among Turkish field pea landraces. J Food Agric Environ 10: 324-329.

  • Page A.L., Miller R.H., Keeney D.R., 1982. Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties. Agronomy Series No 9, American Society of Agronomy, Madison, WI.

  • Peleg Z., Saranga Y., Yazici A., Fahima T., Özturk L., Çakmak I., 2008. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306: 57-67.

  • Pinheiro C., Baeta J.P., Pereira A.M., Domingues H., Ricardo C.P., 2010. Diversity of seed mineral accumulation of Phaseolus vulgaris L. germplasm. J Food Comp Analysis 23: 319-325.

  • Suso M.J., Pierre J., Moreno M.T., Esnault R., Le Guen J., 2001. Variation in outcrossing levels in faba bean cultivars: role of ecological factors. J Agric Sci 136: 399-405.

  • Terzopoulos P.J., Bebeli P.J., 2008. Genetic diversity analysis of Mediterranean faba bean (Vicia faba L.) with ISSR markers. Field Crops Res 108: 39-44.

  • Welch R.M., 1999. Importance of seed mineral nutrient reserves in crop growth and development. In: Rengel Z, editor. Mineral Nutrition of Crops: Fundamental Mechanisms and Implications. New York, NY, USA: Food Products Press, pp. 205-226.

  • Welch R.M., Graham R.D., 2002. Breeding crops for enhanced micronutrient content. Plant Soil 245: 205-214.

  • White P.J., Broadley M.R., 2005. Biofortifying crops with essential mineral elements. Trends Plant Sci 10: 586-593.

  • Yang X., Ye Z.Q., Shi C.H., Zhu M.L., Graham R.D., 1998. Genotypic differences in contents of iron, manganese, copper and zinc in Polish rice grain. J Plant Nutr 21: 1453-1462.


Journal + Issues