Hydrocarbon source rock potential of Miocene diatomaceous sequences in Szurdokpüspöki (Hungary) and Parisdorf/Limberg (Austria)

Emilia Tulan 1 , Michaela S. Radl 2 , Reinhard F. Sachsenhofer 1 , Gabor Tari 3  and Jakub Witkowski 4
  • 1 , Leoben, Austria
  • 2 Karl-Franzens-University Graz, , Graz, Austria
  • 3 , Vienna, Austria
  • 4 Institute of Marine and Environmental Sciences, University of Szczecin, 70-383, Szczecin, Poland


Diatomaceous sediments are often prolific hydrocarbon source rocks. In the Paratethys area, diatomaceous rocks are widespread in the Oligo-Miocene strata. Diatomites from three locations, Szurdokpüspöki (Hungary) and Limberg and Parisdorf (Austria), were selected for this study, together with core materials from rocks underlying diatomites in the Limberg area. Bulk geochemical parameters (total organic carbon [TOC], carbonate and sulphur contents and hydrogen index [HI]) were determined for a total of 44 samples in order to study their petroleum potential. Additionally, 24 samples were prepared to investigate diatom assemblages.

The middle Miocene diatomite from Szurdokpüspöki (Pannonian Basin) formed in a restricted basin near a volcanic silica source. The diatom-rich succession is separated by a rhyolitic tuff into a lower non-marine and an upper marine layer. An approximately 12-m thick interval in the lower part has been investigated. It contains carbonate-rich diatomaceous rocks with a fair to good oil potential (average TOC: 1.28% wt.; HI: 178 to 723 mg HC/g TOC) in its lower part and carbonate-free sediments without oil potential in its upper part (average TOC: 0.14% wt.). The composition of the well-preserved diatom flora supports a near-shore brackish environment. The studied succession is thermally immature. If mature, the carbonate-rich part of the succession may generate about 0.25 tons of hydrocarbons per square meter. The diatomaceous Limberg Member of the lower Miocene Zellerndorf Formation reflects upwelling along the northern margin of the Alpine-Carpathian Foreland. TOC contents are very low (average TOC: 0.13% wt.) and demonstrate that the Limberg Member is a very poor source rock. The same is true for the underlying and over-lying rocks of the Zellerndorf Formation (average TOC: 0.78% wt.). Diatom preservation was found to differ considerably between the study sites. The Szurdokpüspöki section is characterised by excellent diatom preservation, while the diatom valves from Parisdorf/Limberg are highly broken. One reason for this contrast could be the different depositional environments. Volcanic input is also likely to have contributed to the excellent diatom preservation in Szurdokpüspöki. In contrast, high-energy upwelling currents and wave action may have contributed to the poor diatom preservation in Parisdorf. The hydrocarbon potential of diatomaceous rocks of Oligocene (Chert Member; Western Carpathians) and Miocene ages (Groisenbach Member, Aflenz Basin; Kozakhurian sediments, Kaliakra canyon of the western Black Sea) has been studied previously. The comparison shows that diatomaceous rocks deposited in similar depositional settings may hold largely varying petroleum potential and that the petroleum potential is mainly controlled by local factors. For example, both the Kozakhurian sediments and the Limberg Member accumulated in upwelling environments but differ greatly in source rock potential. Moreover, the petroleum potential of the Szurdokpüspöki diatomite, the Chert Member and the Groisenbach Member differs greatly, although all units are deposited in silled basins.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alizadeh, A.A., Guliyev, I.S., Kadirov, F.A., Eppelbaum, L.V., 2016. Geosciences of Azerbaijan. Stuttgart, Springer, 340 pp.

  • Basistová, P., 2007. Diatomaceae in the sediments of the Carpathian Foredeep (locality Brno-Královo Pole), Brno, Bachelor thesis. Masaryk University, Faculty of Science, 37 pp. https://is.muni.cz/th/rnscx

  • Codrea, V., Barbu, Ο., Bedelean, H., 2018. Middle Miocene diatomite-bearing formations from western Romania. Bulletin of the Geological Society of Greece, 40/1, 21. http://doi.org/10.12681/bgsg.16329

  • Cressman, E.R., 1962. Nondetrital siliceous sediments. In: Fleischer M. (ed.) Data of Geochemistry. Geological survey professional paper, 1-23. http://doi.org/10.3133/pp440t

  • Demaison, G., Huizinga B.J., 1994. Genetic classification of petroleum systems using three factors: charge, migration and entrapment. AAPG Memoirs 60, 73–92.

  • Dill, H.G., Sachsenhofer, R.F., Grecula, P., Sasvári, T., Palinkas, L.A., Borojevic-Šostaric, S., Strmic-Palinkas, S., Prochaska, W., Garuti, G., Zaccarini, F., Arbouille, D., Schulz, H.-M. 2008. Fossil fuels, ore and industrial minerals. In: McCann, T. (eds.), The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic, Geological Society, London, 1341–1449. https://doi.org/10.1144/cev2p.9

  • Figarska-Warchoł, B., Stańczak, G., Rembiś, M., Toboła, T., 2015. Diatomaceous rocks of the Jawornik deposit (the Polish Outer Carpathians): petrophysical and petrographical evaluation. Geology, Geophysics and Environment, 41/4, 311–331. https://doi.org/10.7494/geol.2015.41.4.311

  • Flower, R.J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. In: Twelfth International Diatom Symposium, pp. 473–484. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3622-0_48

  • Flower, R.J., Ryves, D.B., 2009. Diatom preservation: differential preservation of sedimentary diatoms in two saline lakes. Acta Botanica Croatica, 68/2, 381–399.

  • Frunzescu, D., Brănoiu, G., 2004. Monografia geologică a Bazinului râului Buzău. Editura Universităţii din Ploieşti, 309 pp.

  • Gaiser, E., Wachnicka, A., Ruiz, P., Tobias, F. and Ross, M., 2005. Diatom indicators of ecosystem change in sub-tropical coastal wetlands. In: Bortone, S.A. (ed.) Estuarine Indicators. CRC Press Marine Science Series, Boca Raton, 599 pp.

  • Grunert, P., Soliman, A., Harzhauser, M., Müllegger, S., Piller, W., Roetzel, R., Rögl, F., 2010. Upwelling conditions in the Early Miocene Central Paratethys Sea. Geologica Carpathica. 61/2, 129–145.

  • Hajós, M.A., 1959. Szurdokpüspöki kovaföldrétegek algái (Die Algen des Kieselgurschichten von Szurdokpüspöki). Földtani Közlöny. 89/2, 155–169.

  • Hajós, M.A., 1968. Die Diatomeen der Miozanen Ablagerungen des Matravorlandes. Geologica Hungarica. 37, 1–401. Hajós, M.A., 1973. The Mediterranean diatoms. Initial Reports of the Deep-Sea Drilling Project, 13 (Part 2), 944–951.

  • Hajós, M.A., 1986. Magyarországi miocén diatomás képzödmények rétegtana/Stratigraphy of Hungary’s miocene Miocene diatomite deposits. Institutum Geologicum Hungaricum Series Paleontologica, 49, 1–339.

  • Harper, M.A., Pledger, S.A., Smith, E.G.C., Van Eaton, A.R., Wilson, C.J.N., 2015. Eruptive and environmental processes recorded by diatoms in volcanically dispersed lake sediments from the Taupo Volcanic Zone, New Zealand. Journal of Paleolimnology, 54/4, 263–277. https://doi.org/10.1007/s10933-015-9851-5

  • Horvat, A., 2004. Middle Miocene siliceous algae of Slovenia. Narodna in univerzitetna knjiznica, Ljubljana, 255 pp.

  • Isaacs, C.M., Rullkötter, J. (eds.), 2001. The Monterey Formation: From Rocks to Molecules. Columbia University Press, New York 268–295. https://doi.org/10.1017/S0016756802246506

  • Jirman, P., Geršlová, E., Bubík, M., Sachsenhofer, R. F., Bechtel, A., Więcław, D. (2019). Depositional environment and hydrocarbon potential of the Oligocene Menilite Formation in the Western Carpathians: A case study from the Loučka section (Czech Republic). Marine and Petroleum Geology, 107, 334–350. https://doi.org/10.1016/j.marpetgeo.2019.05.034

  • Kaempf, J., 2007. On the magnitude of upwelling fluxes in shelf-break canyons. Continental Shelf Research, 27, 2211–2223. https://doi.org/10.1016/j.csr.2007.05.010

  • Kotarba, M.J., Koltun, Y.V., 2006. The origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. In: Golonka, J. & Picha, F.J. (eds.) The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. AAPG Memoirs, 84, 395–442. https://doi.org/10.1306/985614m843074

  • Kotlarczyk, J., Uchman, A., 2012. Integrated ichnology and ichthyology of the Oligocene Menilite Formation, Skole and Subsilesian nappes, Polish Carpathians: a proxy to oxygenation history. Palaeogeography, Palaeoclimatology, Palaeoecology, 331, 104–118. https://doi.org/10.1016/j.palaeo.2012.03.002

  • Krhovský, J., 1981. Stratigraphy and palaeoecology of the Menilite Formation of the Ždánice unit and of the diatomites of the Pouzdřany unit (the western Carpathians, Czechoslovakia) (in Czech with English summary). Zemny Plyn. a Nafta 26, 45–62.

  • Lafargue. E., Marquis F., Pillot D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’institut français du pétrole 53/4, 421–437. https://doi.org/10.2516/ogst:1998036

  • Levkov, Z., 2009. Amphora sensu lato. In: Lange-Bertalot, H. (ed.) Diatoms of Europe, Volume 5. A.R.G. Gantner, 916 pp.

  • Lohman, K.E., 1957. Cenozoic nonmarine diatoms from the Great Basin. Doctoral dissertation, California Institute of Technology, 208 pp.

  • Mayer, J., Rupprecht, B.J., Sachsenhofer, R.F., Tari, G., Bechtel, A., Coric, S., Siedl, W., Kosi, W., 2018. Source Potential and Depositional Environment of Oligocene and Miocene rocks Offshore Bulgaria. In: Simmons, M. et al. (eds.), Geological Society, London, Special Publications 464, 307–328. https://doi.org/10.1144/SP464.2

  • Ognjanova-Rumenova, N., Radovan P., 2015. Stratigraphic and taxonomic significance of siliceous microfossils collected from the Turiec Basin, Western Carpathians (Slovakia). Acta Botanica Croatica 74/2, 345–361. https://doi.org/10.1515/botcro-2015-0023

  • Olli, K., Clarke, A., Danielsson, Å., Aigars, J., Conley, D.J., Tamminen, T., 2008. Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. Journal of Marine Systems, 73/3-4, 284–299. https://doi.org/10.1016/j.jmarsys.2007.04.009

  • Pantocsek, J., 1889. Beiträge zur Kenntnis der Fossilen Bacillarien Ungarns. Teil II. Brackwasser Bacillarien. Anhang: Analyse de marine Depots von Bory, Bremia, Nagy-Kurtos in Ungarn; Ananio und Kusnetzk in Russland. Nagy-Tapolcsány, Buchdruckerei von Julius Platzko, 123 pp.

  • Pícha, F.J., Stráník, Z., 1999. Late Cretaceous to early Miocene deposits of the Carpathian foreland basin in southern Moravia. International Journal of Earth Sciences, 88, 475–495.

  • Řeháková, Z., 1997. Bericht 1997 über mikropaläontologische Untersuchungen der diatomeenführenden Sedimente auf Blatt 22 Hollabrunn. — unveröffentlichter Bericht, Archiv der Geologischen Bundesanstalt, Inv.Nr. ALK-022REH/97, pp. 5, Wien.

  • Roetzel, R., (Eds.)., 1999. Arbeitstagung der Geologischen Bundesanstalt 1999, Geologische Karten ÖK 9 Retz und ÖK 22 Hollabrunn, Geogenes Naturraumpotential der Bezirke Horn und Hollabrunn, Retz, Wien.

  • Roetzel, R., Ćoric, S., Galovic, I., Rögl, F., 2006. Early Miocene (Ottnangian) coastal upwelling conditions along the southeastern scarp of the Bohemian Massif (Paris-dorf, Lower Austria, Central Paratethys). Beiträge zur Paläontologie, 30, 387–413.

  • Ross, R., 1995. Revision of Rutilaria Greville (Bacillariophyta). Bulletin of the Natural History Museum. Botany Series, 104 pp.

  • Round, F.E., Crawford, R.M., Mann, D.G., 1990. Diatoms: biology and morphology of the genera. Cambridge University Press, 747 pp.

  • Ross, R., 1995. Revision of Rutilaria Greville (Bacillariophyta). Bulletin of the Natural History Museum. Botany Series. Bulletin of the Natural History Museum of London Botany, 25 1–93.

  • Rovira, L., Trobajo, R., Sato, S., Ibáñez, C., Mann, D.G., 2015. Genetic and physiological diversity in the diatom Nitzschia inconspicua. Journal of Eukaryotic Microbiology, 62/6, 815-832.

  • Sachsenhofer, R.F., Bechtel, A., Reischenbacher, D., Weiss, A., 2003. Evolution of lacustrine systems along the Miocene Mur-Mürz fault system (Eastern Alps, Austria) and implications on source rocks in pull-apart basins. Marine and Petroleum Geology, 20, 83–110. https://doi.org/10.1016/s0264-8172(03)00018-7

  • Sachsenhofer, R.F., Popov, S.V., Bechtel, A., Coric, S., Fran-cu, J., Gratzer, R., Grunert, P., Kotarba, M., Mayer, J., Pupp, M., Rupprecht, B.J., 2018a. Oligocene and Lower Miocene source rocks in the Paratethys: Palaeogeographic and stratigraphic controls. In: Simmons M, (editor) Petroleum Geology of the Black Sea. Geological Society London, Special Publication, 464, 267–306. https://doi.org/10.1144/sp464.1

  • Sachsenhofer, R.F., Popov, S.V., Coric, S., Mayer, J., Misch, D., Morton, M.T., Pupp, M., Rauball, J., Tari, G., 2018b. Paratethyan petroleum source rocks: An overview. Journal Petroleum Geology 41/3, 219–245. https://doi.org/10.1111/jpg.12702

  • Schrader H.J., 1973. Proposal for a standardized method of cleaning diatoms-bearing deep-sea and land-exposed marine sediments. In: Simonsen, R. (eds.) Second symposium on recent and fossil diatoms. Nova Hedwigia, supplement 45, 409.

  • Schrader, H., Gersonde R., 1978. Diatoms and silicoflagellates. In: Zachariasse et al. Microplaeontological counting methods and techniques - an excercise on an eight metres section of the lower Pliocene of Capo Rossello. Sicily. Utrecht Micropaleontological Bulletin, 17, 129–76.

  • Schultz, L., 1964. Quantitative interpretation of miner-alogical composition from X-ray and chemical data for the Pierre Shale. United States Geological Survey, 391 pp.

  • Shukla, S.K., Mohan, R., 2012. The Contribution of Di-atoms to Worldwide Crude Oil Deposits. In: Gordon R., Seckbach J. (eds.) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, Springer, Dordrecht, 25, 355–382. https://doi.org/10.1007/978-94-007-5110-1_20

  • Szentesi, Z., 2008. Bufo aff. viridis (Anura: Bufonidae) from the Middle Miocene diatomite of Szurdokpüspöki, northeastern Hungary. Central European Geology, 51/4, 315–324. https://doi.org/10.1556/ceugeol.51.2008.4.2

  • Tari, G., Horváth, F., 2006. Alpine evolution and hydro-carbon geology of the Pannonian Basin: an overview. In: Golonka J., Picha F. (eds.), The Carpathians and their Foreland: Geology and Hydrocarbon Resources. AAPG Memoir, 84, 605–618. https://doi.org/10.1306/985733m843141

  • Tulan, E., Sachsenhofer, R.F., Horvat, A., Tari, G., Olaru-Florea, R.F., 2019. Hydrocarbon source rock potential of Oligo-Miocene diatomaceous rocks in Sibiciu de Sus, Romania, Abstracts AAPG Paratethys Petroleum Systems between Central Europe and the Caspian Region, Vienna.

  • Varga, G., Csillag-Teplánszky, E., Félegyházi, Z., 1975. Geology of the Mátra Mountains (in Hungarian). Annual Report of the Hungarian Geological Insitute 57/1, 575 pp.

  • Weckström, K., Saunders, K.M., Gell, P.A., Skilbeck, C.G. (eds.), 2017. Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research. https://doi.org/10.1007/978-94-024-0990-1

  • Wehr, J.D., Sheath, R.G., Kociolek, J.P. (eds). 2015. Freshwater algae of North America: Ecology and Classification. Elsevier, 918 pp.

  • Williams, D.M., Round, F.E., 1987. Revision of the genus Fragilaria. Diatom research, 2/2, 267–288.

  • Witkowski, A., Lange-Bertalot, H., Metzeltin, D., 2000. Diatom flora of marine coasts I. Iconographia Diatomologica 7. ARG Gantner Verlag KG, Ruggell, 7, 950 pp.

  • Zolitschka B., 1998. Paläoklimatische Bedeutung laminierter Sedimente. Holzmaar (Eifel, Deutschland), Lake C2 (Nordwest-Territorien, Kanada) und Lago Grande di Monticchio (Basilicata, Italien). Bornträger, Berlin, 176 pp.


Journal + Issues