The first consistent inventory of rock glaciers and their hydrological catchments of the Austrian Alps

  • 1 Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz, Austria
  • 2 , Saline, Austria
  • 3 Department of Geography and Regional Science, Working Group on Alpine Landscape Dynamics (ALADYN), University of Graz, Graz, Austria
  • 4 Institute of Geology, University of Innsbruck, Innsbruck, Austria
  • 5 Ministry of Sustainability and Tourism, , Vienna, Austria
  • 6 , Innsbruck, Austria

Abstract

A first consistent and homogenized polygon-based inventory of rock glaciers of the Austrian Alps is presented. Compiling previous inventories and updating them by using digital elevation models (1 m grid resolution) derived from airborne laser scanning yield a dataset of 5769 rock glaciers in a ca. 48400 km2 large area. A consistent methodological approach for assigning attributes, stored in a detailed attribute table, was developed and applied here to improve comparability and reproducibility. The majority (60 %) of the studied landforms is considered to be relict (no permafrost); the remaining 40 % may still contain permafrost ice and are thus classified as intact. Rock glaciers range in elevation from 476 to 3312 m a.s.l. and cover a total area of 303 km2. The distribution of rock glaciers is mainly related to the topography of the Austrian Alps and related effects such as past glaciation history.

In addition, a comprehensive analysis of the hydrological catchment areas of all individual rock glaciers was carried out. A hydrological catchment analysis in rock glacier areas is of great interest for sustainable water management issues in alpine catchments as these landforms represent shallow aquifer systems with a relatively high storage and thus buffer capability, especially in crystalline bedrock areas. A total area of almost 1280 km2 is drained through rock glaciers.

The presented rock glacier and rock glacier catchment inventories provide an important basis for further research, particularly for a better understanding of the hydrogeology and geomorphology of alpine catchments and their potential alteration in the light of climate change, but also in terms of paleoglaciation and deglaciation in the Alpine Lateglacial to Holocene period. As such, the inventories are seen as an important base to stimulate further research.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anderson, R.S., Anderson, L.S., Armstrong, W.H., Rossi, M.W., Crump, S.E., 2018. Glaciation if alpine valleys: The glacier-debris covered glacier – rock glacier continuum. Geomorphology, 311, 127–142. https://doi.org/10.1016/j.geomorph.2018.03.015.

  • Ballantyne, C.K., Kirkbridge, M.P., 1986. The characteristics and significance of some lateglacial protalus ramparts in upland Britain. Earth Surfaces Processes and Landforms, 11, 659–671. https://doi.org/10.1002/esp.32901110609

  • Bardinoni, F., Scotti, R., Sailer, R., Mair, V., 2019. Evaluating sources of uncertainty and variability in rock glacier inventories. Earth Surface Processes and Landforms, https://doi.org/10.1002/esp.4674

  • Barsch, D., 1996. Rockglaciers. Indicators for the present and former geoecology in high mountain environments. Springer, Berlin, 331 pp.

  • Beniston, M., 2005. Mountain climates and climatic change: An overview of processes focusing on the European Alps. Pure and Applied Geophysics, 162, 1587–1606. https://doi.org/10.1007/s00024-005-2684-9

  • Berthling, I., 2011. Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology, 131, 98–106. https://doi.org/10.1016/j.geomorph.2011.05.002

  • Boccali, C., Zebre, M., Colucci, R.R., 2019. Geometry and paleo-ice content of rock glsaciers in the southeastern Alps (NE Italy – NW Slovenia). Journal of Maps, 15/2, 346–355. https://doi.org/10.1080/17445647.2019.1595 753

  • Boeckli, L., Brenning, A., Gruber, S., Noetzli, J., 2012. Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere, 6, 807–820. https://doi.org/10.5194/tc-6-807-2012

  • Bollmann, E., Rieg, L., Spross, M., Sailer, R., Bucher, K., Maukisch, M., Monreal, M., Zischg, A., Mair, V., Lang, K., Stötter, J., 2012. Blockgletscherkatatser Südtirol – Erstellung und Analyse. In: Stötter, J, Sailer, R. (eds.), Permafrost in Südtirol. Innsbrucker Geographische Studien 39, pp. 147–171.

  • Colucci, R.R., Boccali, C., Žebre, M., Guglielmin, M., 2016. Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps. Geomorphology, 269, 112–121. https://doi.org/10.1016/j.geomorph.2016.06.039

  • Colucci, R.R., Forte, E., Zebre, M., Maset, E., Zanettini, C., Guglielmin, M., 2019. Is that a relict rock glacier? Geo-morphology, 330, 177–1898. https://doi.org/10.1016/j.geomorph.2019.02.002

  • Ehlers, J., Gibbard, P.L., Hughes, P.D., 2011. Quaternary Glaciations – Extent and Chronology. Developments in Quaternary Science, 15, Amsterdam. The Netherlands, 661–698. ISBN: 978-0-444-53447-7.

  • Fernandes, M., Palma, P., Lopes, L., Ruiz-Fernández, J., Pereira, P., Oliva, M., 2018. Spatial distribution and morphometry of permafrost-related landforms in the Central Pyrenees and associated paleoclimatic implications. Quaternary International, 470, 96–108. https://doi.org/10.1016/j.quaint.2017.08.071

  • Frauenfelder, R., Kääb, A., 2000. Towards a palaeoclimatic model of rock-glacier formation in the Swiss Alps. Annals of Glaciology, 31, 281–286. https://doi.org/10.3189/172756400781820264

  • Grassler, F., 1984. Alpenvereinseinteilung der Ostalpen (AVE). Berg ‘84 (Alpenvereinsjahrbuch 108), 215–224.

  • Harrington, J.S., Mozil, A., Hayashi, M., Bentley, L.R., 2018. Groundwater flow and storage processes in an inactive rock glacier. Hydrological Processes, 32, 3070–3088. https://doi.org/10.1002/hyp.13248

  • Harrison, S., Whalley, B., Anderson, E., 2008. Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate. Journal of Quaternary Science, 23/3, 287–304. https://doi.org/10.1002/jqs.1148

  • Haeberli, W., Schaub, Y., Huggel, C., 2017. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology, 293, 405–417. https://doi.org/10.1016/j.geomorph.2016.02.009

  • Hedding D.W., 2016. Pronival ramparts: A review. Progress in Physical Geography, 40/6, 835–855. https://doi.org/10.1177/0309133316678148

  • van Husen, D., 1996. Exkursionsführer zur Exkursion B1 der DEUQUA Tagung 1996, Gmunden Oberösterreich. Unpublished excursion guide of the German Quaternary Association (DEUQUA), Gmunden, Austria, 34 pp.

  • van Husen, D., 2011. Quaternary Glaciations in Austria. In: Ehlers, J., Gibbard, P.L., Hughes, P.D., 2011. Quaternary Glaciations – Extent and Chronology. Developments in Quaternary Science, 15, Amsterdam. The Netherlands, 661–698. ISBN: 978-0-444-53447-7.

  • Ikeda, A., Matsuoka, N., 2006. Pebbly versus bouldery rock glaciers: Morphology, structure and processes. Geomorphology, 73, 279–296. https://doi.org/10.1016/j.geomorph.2005.07.015

  • Ilyashuk, B.P., Ilyashuk, E.A., Psenner, R., Tessadri, R., Koinig, K.A., 2018. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine lakes. Global Change Biology, 24, 1548–1562. https://doi.org/10.1111/gcb.13985

  • Ivy-Ochs, S., Kober, F., 2008. Surface exposure dating with cosmogenic nuclides. Quaternary Science Journal, 57/1-2, 179–209.

  • Jarman, D., Wilson, P., Harrison, S., 2013. Are there any relict rock glaciers in the British mountains? Journal of Quaternary Science, 28/2, 131–143. https://doi.org/10.1002/jqs.2574

  • Jones, D.B., Harrison, S., Anderson, K., Selly, H.L., Wood, J.L., Betts, R.A., 2017. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Global and Planetary Change, 160,123–142. https://doi.org/10.1016/j.gloplacha.2017.11.005

  • Jones, D.B., Harrison, S., Anderson, K., Betts, R.A., 2018. Mountain rock glaciers contain globally significant water stores. Scientific Reports, 8, 2834. https://doi.org/10.1038/s41598-018-21244-w

  • Jones, D.B., Harrison, S., Anderson, K., Whalley, W.B., 2019. Rock glaciers and mountain hydrology: A review. Earth-Science Reviews, 193, 66–90. https://doi.org/10.1016/j.earscirev.2019.04.001

  • Kaufmann, V., Roth, K., Seier, G., 2017. Tschadinhorn Blockgletscher, Schobergruppe, Hohe Tauern – ein Beitrag zur aktuellen Kinematik. In: Lienhart, W. (Ed.): Ingenieurvermessung `17. Beiträge zum 18. Internationalen Ingenieurvermessungskurs Graz, 2017, Wich-mann Verlag, Berlin/Offenbach, p. 427–438.

  • Kellerer-Pirklbauer, A., 2008. The Schmidt-hammer as a relative age dating tool for rock glacier surfaces: examples from Northern and Central Europe. Proceedings of the Ninth International Conference on Permafrost (NICOP), University of Alaska, Fairbanks, USA, June 29 – July 3, 2008, 913–918.

  • Kellerer-Pirklbauer, A., 2019. Long-term monitoring of sporadic permafrost at the eastern margin of the European Alps (Hochreichart, Seckauer Tauern range, Austria). Permafrost and Periglacial Processes, https://doi.org/10.1002/ppp.2021

  • Kellerer-Pirklbauer, A., Lieb, G.K., Kleinferchner, H., 2012. A new rock glacier inventory of the Eastern European Alps. Austrian Journal of Earth Sciences, 105/2, 78–93.

  • Kellerer-Pirklbauer, A., Wagner, T., Winkler, G., 2016. Inventarisierung von blockgletscher-verdächtigen Formen und deren hydrologischen Einzugsgebieten in den steirischen Niederen Tauern mit Hilfe von hochaufgelösten Geländemodellen. Joannea Geologie und Palaeontologie, 12, 53–62.

  • Knight, J., Harrison, S., Jones, D.B., 2019. Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology, 324, 14–24. https://doi.org/10.1016/j.geomorph.2018.09.020

  • Krainer, K., Mostler, W., 2002. Hydrology of active rock glaciers: examples from the Austrian Alps. Arctic Antarctic and Alpine Research, 34,142–149.

  • Krainer, K., Ribis, M., 2012. A rock glacier inventory of the Tyrolean Alps (Austria). Austrian Journal of Earth Sciences, 105/2, 32–47.

  • Krainer, K., Bressan, D., Dietre, B., Haas, J.N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., Tonidandel, D., 2015. A 10,300-yearold permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Research, 83/2, 324–335. https://doi.org/10.1016/j.yqres.2014.12.005

  • Lauber, U., Kotyla, P., Morche, D., Goldscheider, N., 2014. Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow. Hydrology and Earth System Sciences, 18, 4437–4452. https://dx.doi.org/10.5194/hess-18-4437-2014

  • Lieb, G.K., Kellerer-Pirklbauer, A., Kleinferchner, H., 2012. Second rock glacier inventory (RGI2) of Central and Eastern Austria, link to Shapefile. https://doi.pangaea.de/10.1594/PANGAEA.869805

  • Millar, C.I., Westfall, R.D., 2008. Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA; inventory, distribution and climatic relationships. Quaternary International, 188, 90–104. https://dx.doi.org/10.1016/j.quaint.2007.06.004

  • Moran, A.P., Ivy-Ochs, S., Vockenhuber, C., Kerschner, H., 2016. Rock glacier development in the Northern Calcareous Alps at the Pleistocene-Holocene boundary. Geomorphology, 273, 178–188. https://dx.doi.org/10.1016/j.geomorph.2016.08.017

  • Nagl, H., 1976. Die Raum-Zeit Verteilung der Blockgletscher in den Niederen Tauern und die eiszeitliche Vergletscherung der Seckauer Tauern. Mitteilungen des naturwissenschaftlichen Vereins für Steiermark, 106, 95–118.

  • NGP 2015 – 2. Nationaler Gewässerbewirtschaftungsplan (2015): BMLFUW, Sektion IV Wasserwirtschaft. https://www.bmnt.gv.at/wasser/wisa/fachinformation/ngp/ngp-2015.html

  • Onaca, A., Ardelean, F., Urdea, P., Magori, B., 2017. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors. Geomorphology, 293(Part B), 391–404. https://doi.org/10.1016/j.geomorph.2016.03.032

  • Palma, P., Oliva, M., García-Hernández, C., Gómez Ortiz, A., Ruiz-Fernández, J., Salvador-Franch, F.; Catarineu, M., 2017. Spatial characterization of glacial and periglacial landforms in the highlands of Sierra Nevada (Spain). Science of the Total Environment, 584-585(Supplement C), 1256–1267.

  • Pauritsch, M., Wagner, T., Winkler, G., Birk, S., 2017. Investigating groundwater flow components in an Alpine relict rock glacier (Austria) using a numerical model. Hydro-geology Journal, 25, 371–383. https://doi.org/10.1007/s10040-016-1484-x

  • Popescu, R., Onaca, A., Urdea, P., Vespremeanu-Stroe, A., 2017. Spatial Distribution and Main Characteristics of Alpine Permafrost from Southern Carpathians, Romania. In: Radoane, M., Vespremeanu-Stroe, A. (eds) Land-form Dynamics and Evolution in Romania. Springer Geography. Springer, Cham

  • Ribis, M., (2017): Geologisch-hydrogeologische und hydrochemische Untersuchungen in Permafrostbereichen der Ötztaler Alpen (Tirol, Österreich). PhD thesis, Department of Geology, University of Innsbruck. 326 p..

  • Rode, M., Kellerer-Pirklbauer, A., 2012. Schmidt-hammer exposure-age dating (SHD) of rock glaciers in the Schöderkogel-Eisenhut area, Schladminger Tauern Range, Austria. The Holocene, 22/7, 761–771. https://doi.org/10.1177/0959683611430410

  • Rogger, M., Chirico, G.B., Hausmann, H., Krainer, K., Brückl, E., Stadler, P., Blöschl, G., 2017. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resources Research, 53, 1288–1308. https://doi.org/10.1002/2016WR019341

  • Scapozza, C., 2015. Investigation on protalus ramparts in the Swiss Alps. Geographica Helvetica, 70, 135–139.

  • Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., Wester, P., 2015. Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth. The Cryo-sphere, 9, 2089–2099. https://doi.org/10.5194/tc-9-2089-2015

  • Schmid, S.M., Flügenschuh, B., Kissling, E., Schuster, R., 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97/1, 93–117. https://doi.org/10.1007/s00015-004-1113-x

  • Scotti, R., Crosta, G.B., Villa, A., 2017. Destabilisation of Creeping Permafrost: The Plator Rock Glacier case study (Central Italian Alps). Permafrost and Periglacial Processes, 28, 224–236. https://doi.org/10.1002/ppp.1917

  • Sorg, A., Kääb, A., Roesch, A., Bigler, C., Stoffel, M., 2015. Contrasting responses of Central Asian rock glacierst o global warming. Scientific Reports, 5, 8228. https://doi.org/10.1038/srep08228

  • Stocker, K., Krainer, K., 2011. Abschlussbericht Blockgletscherinventar Vorarlberg. Unpublished report, 6p.

  • Stocker, K., 2012a. Geologie und Blockgletscher der Madererspitze (Vorarlberg). Unpublished master thesis, Institut für Geologie und Paläontologie, University of Innsbruck. 134 p.

  • Stocker, K., 2012b. Blockgletscher in Vorarlberg und in der Verwallgruppe. Museumsverein Jahrbuch Vorarlberger Landesmuseum 2012, 124–139.

  • Thies, H., Nickus, U., Tessardi, R., Tropper, P., Krainer, K., 2017. Peculiar arsenic, copper, nickel, uranium, and yttrium-rich stone coatings in a high mountain stream in the Austrian Alps. Austrian Journal of Earth Sciences, 110/2. https://doi.org/10.17738/ajes.2017.0012

  • Untersweg, T., Schwendt, A., 1995. Die Quellen der Block-gletscher in den Niederen Tauern. Bericht der wasserwirtschaftlichen Planung Nr. 78, Graz, p. 76.

  • Untersweg, T., Schwendt, A., 1996. Blockgletscher und Quellen in den Niederen Tauern. Mitteilungen der Österreichischen Geologischen Gesellschaft, 87, 47–55.

  • Uxa, T., Mida, P., 2017. Rock glaciers in the Western and High Tatra Mountains, Western Carpathians. Journal of Maps, 13, 844–857. https://doi.org/10.1080/1744647.2017.1378136

  • Wagner, T., Mayaud, C., Benischke, R., Birk, S., 2013. Ein besseres Verständnis des Lurbach-Karstsystems durch ein konzeptionelles Niederschlags-Abfluss-Modell. Grundwasser, 18, 225–235. https://doi.org/10.1007/s00767-013-0234-4

  • Wagner, T., Pauritsch, M., Winkler, G., 2016. Impact of relict rock glaciers on spring and stream flow of alpine water-sheds: Examples of the Niedere Tauern Range, Eastern Alps (Austria). Austrian Journal of Earth Sciences, 109/1, 84–98. https://doi.org/10.17738/ajes.2016.0006

  • Wagner, T., Winkler, G., Ribis, M., Kellerer-Pirklbauer, A., Lieb, G.K., Krainer, K., 2018. Rock glaciers – prominent landforms in (protected areas of) Austria. Conference Volume, 6th Symposium for Research in Protected Areas, 689–692. https://doi.org/10.1553/np_symposium2017

  • Wagner, T., Kainz, S., Wedenig, M., Pleschberger, R., Krainer, K., Kellerer-Pirklbauer, A., Ribis, M., Hergarten, S., Winkler, G., 2019a. Wasserwirtschaftiche Aspekte von Blockgletschern in Kristallingebieten der Ostalpen – Speicherverhalten, Abflussdynamik und Hydrochemie mit Schwerpunkt Schwermetallbelastungen (RGHeavyMetal) – Endbericht. Final report, 158 p. https://www.bmnt.gv.at/wasser/wasserqualitaet/RG-HeavyMetal.html

  • Wagner, T., Pauritsch, M., Mayaud, C., Kellerer-Pirklbauer, A., Thalheim, F., Winkler, G., 2019b. Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria). Geografiska Annaler: Series A, Physical Geography, 101/4, 310–333. https://doi.org/10.1080/04353676.2019.1670950

  • Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirkl-bauer, A., Benischke, R., Leis, A., Morawetz, R., Schreilechner, M.G., Hergarten S., 2016. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeology Journal, 24, 937–953. https://doi.org/10.1007/s10040-015-1348-9

  • Winkler, G., Wagner, T., Krainer, K., Ribis, M., Hergarten, S., 2018a. Hydrogeology of Rock Glaciers – Storage Capacity and Drainage Dynamics – an Overview. In: Sychev, V.G., Mueller, L., Novel methods and results of landscape research in Europe, Central Asia and Siberia, Vol II/71, 329–334.

  • Winkler, G., Wagner, T., Ribis, M., Pauritsch, M., Krainer, K., 2018b. The impact of rock glaciers on the runoff of alpine catchments in protected areas of Austria. Conference Volume, 6th Symposium for Research in Protected Areas, 735–738. https://doi.org/10.1553/np_symposium2017

  • Zebre, M, Stepisnik, U., 2015. Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surface Processes and Landforms, 40, 1493–1505. https://doi.org/10.1002/esp.3731

OPEN ACCESS

Journal + Issues

Search