Evidence for pre-Pleistocene landforms in the Eastern Alps: Geomorphological constraints from the Gurktal Alps


We present evidence for a series of pre-Pleistocene landforms on hand of a new geomorphological map for the Gurktal region of the Eastern Alps. The Gurktal Alps region is the westernmost region of the Eastern Alps that escaped the glacial reshaping in the Pleistocene. Its morphology therefore preserves evidence of older landforms in closer proximity to the central part of the range than any other region in the Alps. The region is therefore useful to document aspects of the geomorphological evolution for the Eastern Alps during both, the Pleistocene glaciations and the earlier uplift history. Our mapping approach is twofold. We applied stream-power analysis outside the glacially overprinted areas to detect and classify spatially distinct quasi-stable stream segments, which we expanded to planar objects using slope analysis combined with field mapping. Our mapping results document four palaeo-surfaces located roughly at about 1500 m, 1200 m, 900 m and about 800 m above sea level. We correlate these levels with well-known palaeo-surfaces from the eastern end of the Alps and suggest that they can be interpreted in terms of more than 1000 m of surface uplift in the last six million years. Channel analysis and the distribution of Pleistocene gravel terraces suggest that the main trunk of the river Gurk was diverted from the Wimitz valley in the Rissian. Furthermore, steam-power analysis documents an ongoing activity of the Görschitztal fault and some inferred Pleistocene activity of a north-west trending fault close to the township of Gurk.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aigner, A., 1922. Geomorphologische Beobachtungen in den Gurktaler Alpen. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse, Akademie der Wissenschaften, Wien, 131, 243–278.

  • Aigner, A., 1924. Über tertiäre und diluviale Ablagerungen am Südfuße der Niederen Tauern. Jahrbuch Geologische Bundesanstalt, Wien, 74, 179–196.

  • Baran, R., Friedrich, A.M., Schlunegger, F., 2014. The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere, 6/2, 124–131. https://doi.org/10.1130/L307.1

  • Bartosch, T., Stüwe, K., Robl, J., 2017. Topographic evolution of the Eastern Alps: The influence of strike-slip faulting activity. Lithosphere, 9/3, 384–398. https://doi.org/10.1130/L594.1

  • Cooperation OGD Austria, 2015. Digitales 10m— Geländemodell aus Airborne Laserscan Daten. http://gis.ktn.gv.at/OGD/Geographie_Planung/ogd-10m-at.zip

  • Dertnig, F., Stüwe, K., Woodhead, J., Stuart, F.M., Spötl, C., 2017. Constraints on the Miocene landscape evolution of the Eastern Alps from the Kalkspitze region, Niedere Tauern (Austria). Geomorphology, 299, 24–38. https://doi.org/10.1016/j.geomorph.2017.09.024

  • Dixon, J.L., von Blanckenburg, F., Stüwe, K., Christl, M., 2016. Glaciation’s topographic control on Holocene erosion at the eastern edge of the Alps. Earth Surface Dynamics, 4/4, 895–909. https://doi.org/10.5194/esurf-4-895-2016

  • Ebner, F., Sachsenhofer, R.F., 1995. Palaeogeography, subsidence and thermal history of the Neogene Styrian Basin (Pannonian basin system, Austria). Tectonophysics, 242/1-2, 133–150. https://doi.org/10.1016/0040-1951(94)00155-3

  • Exner, C., 1949. Beitrag zur Kenntnis der jungen Hebung der östlichen Hohen Tauern. Mitteilungen der Geographischen Gesellschaft Wien, 91, 186–196.

  • Exner, C., 1989. Geologie des mittleren Lungaus. Jahrbuch Geologische Bundesanstalt, Wien, 132/1, 7–103.

  • Exner, C., Hejl, E., Mandl, G.W., 2005. Geologische Karte der Republik Österreich: 157-Tamsweg. Geologische Bundesanstalt, Wien, ÖK 1:50.000.

  • Frisch, W., Kuhlemann, J., Dunkl, I., 2001. The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps—a mosaic stone in the geo-morphological evolution of the Eastern Alps. International Journal of Earth Sciences, 90/3, 500–518. https://doi.org/10.1007/s005310000189

  • Frisch, W., Kuhlemann, J., Dunkl, I., Brügel, A., 1998. Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics, 297/1, 1–15, https://doi.org/10.1016/S0040-1951(98)00160-7

  • Genser, J., Cloetingh, S.A., Neubauer, F., 2007. Late orogenic rebound and oblique Alpine convergence: New constraints from subsidence analysis of the Austrian Molasse basin. Global and Planetary Change, 58/1-4, 214–223. https://doi.org/10.1016/j.gloplacha.2007.03.010

  • Geological Survey of Austria, 2017. ArcGIS Map Service: Geologic structure layer of projekte_onegeology / 1GE_GBA_500k_Surface_Geology, http://gisgba.geologie.ac.at/arcgis/services

  • GeoServices-KAGIS, 2017. ArcGIS shapefiles of geological map 1:200.000 of Carinthia—Kärnten Atlas V4. Amt der Kärntner Landesregierung. https://gis.ktn.gv.at

  • Hack, J., 1957. Studies of longitudinal profiles in Virginia and Maryland. U. S. Geological Survey, Professional Paper 294-B. https://doi.org/10.3133/pp294B

  • Hejl, E., 1997. ‘Cold spots’ during the Cenozoic evolution of the Eastern Alps: thermochronological interpretation of apatite fission-track data. Tectonophysics, 272/2–4, 159–173. https://doi.org/10.1016/S0040-1951(96)00256-9

  • Hejl, E., 1998. Über die känozoische Abkühlung und Denudation der Zentralalpen Östlich der Hohen Tauern – eine Apatit-Spaltspuranalyse. Mitteilungen der Österreichischen Geologischen Gesellschaft, 89, 179–199.

  • Hergarten, S., Robl, J., Stüwe, K., 2016. Tectonic geomorphology at small catchment sizes—extensions of the stream-power approach and the chi method. Earth Surface Dynamics, 4, 1–9. https://doi.org/10.5194/esurf-4-1-2016

  • Howard, A.D., Kerby, G., 1983. Channel changes in badlands. Geological Society of America Bulletin, 94, 739–752. https://doi.org/10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2

  • van Husen, D., 1987. Die Ostalpen in den Eiszeiten. Geologische Bundesanstalt, Wien.

  • van Husen, D., 2011. Quaternary glaciations in Austria. Developments in Quarternary Sciences, Elsevier, 15, 15–28. https://doi.org/10.1016/B978-0-444-53447-7.00002-7

  • van Husen, D., 2012. Zur glazialen Entwicklung des oberen Gurktales. Jahrbuch Geologische Bundesanstalt, Wien, 152/1–4, 39–56.

  • Kirby, E., Whipple, K.X., Tang, W., Chen, Z., 2003. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research, 108/B4. https://doi.org/10.1029/2001JB000861

  • Kuhlemann, J., Dunkl, I., Brügel, A., Spiegel, C., Frisch, W., 2006. From source terrains of the Eastern Alps to the Molasse Basin: Detrital record of non-steady-state exhumation. Tectonophysics, 413/3–4, 301–316. https://doi.org/10.1016/j.tecto.2005.11.007

  • Kuhlemann, J., Kempf, O., 2002. Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sedimentary Geology, 152/1–2, 45–78. https://doi.org/10.1016/S0037-0738(01)00285-8

  • Legrain, N., Stüwe, K., Wölfer, A,. 2014. Incised relict landscapes in the eastern Alps. Geomorphology, 221, 124–138. https://doi.org/10.1016/j.geomorph.2014.06.010

  • Montgomery, D.R., Korup, O., 2010. Preservation of inner gorges through repeated Alpine glaciations. Nature Geoscience, 4, 62–67. https://doi.org/10.1038/ngeo1030

  • Neubauer, F., Pistotnik, J., 1984. Das Altpaläozoikum und Unterkarbon des Gurktaler Deckensystems (Ostalpen) und ihre paläogeographischen Beziehungen. Geologische Rundschau, 73/1, 149–174.

  • Neubauer, F., Heberer, B., Dunkl, I., Liu, X., Bernroider, M., Dong, Y, 2018. The Oligocene Reifnitz tonalite (Austria) and its host rocks: implications for Cretaceous and Oligocene—Neogene tectonics of the southeastern Eastern Alps. Geologica Carpathica, 69/3, 237–253. https://doi.org/10.1515/geoca-2018-0014

  • Neumann, H.H., 1989. Die Oberkreide des Krappfeldes. Arbeitstagung Geologische Bundesanstalt, Wien, 70–79.

  • Perron, J.T., Royden, L., 2013. An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38/6, 570–576. https://doi.org/10.1002/esp.3302

  • Rantitsch, G., Russegger, B., 2000. Thrust-related very low grade metamorphism within the Gurktal Nappe Complex (Eastern Alps). Jahrbuch Geologische Bundesanstalt, Wien 142/2, 219–225.

  • Ratschbacher, L., Frisch, W., Linzer, H.G., 1991. Lateral extrusion in the Eastern Alps, part 2: Structural analysis. Tectonics, 10/2, 257–271. https://doi.org/10.1029/90TC02623

  • Reinecker, J., 2000. Stress and deformation: Miocene to present-day tectonics in the Eastern Alps. Tübinger Geowissenschafliche Arbeiten, Reihe A, 55.

  • Royden, L., Perron, J.T., 2013. Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research: Earth Surface, 118, 497–518. https://doi.org/10.1002/jgrf.20031

  • Ruszkiczay-Rüdiger, Zs., Braucher, R., Csillag, G., Fodor, L.I., Dunai, T.J., Bada, G., Bourlés, D., Müller, P., 2011. Dating Pleistocene aeolian landforms in Hungary, Central Europe, using in situ produced cosmogenic 10BE. Quaternary Geochronology, 6/6, 515–529. https://doi.org/10.1016/j.quageo.2011.06.001

  • Ruszkiczay-Rüdiger, Zs., Csillag, G., Fodor, L., Braucher, R., Novothny, Á., Thamó-Bozsó, E., Virág, A., Pazonyi, R., Timár, G., and ASTER Team, 2018. Integration of new and revised chronological data to constrain the terrace evolution of the Danube River (Gerecse Hills, Pannonian Basin). Quaternary Geochronology, 48, 148–170. https://doi.org/10.1016/j.quageo.2018.08.003

  • Schwanghart, W., Kuhn, N.J., 2010. Topotoolbox: A set of Matlab functions for topographic analysis. Environmental Modelling & Software, 25/6, 770–781. https://doi.org/10.1016/j.envsoft.2009.12.002

  • Spiegel, C., Kuhlemann, J., Dunkl, I., Frisch, W., 2001. Paleogeography and catchment evolution in a mobile orogenic belt: the Central Alps in Oligo–Miocene times. Tectonophysics, 341/1–5, 33–47. https://doi.org/10.1016/S0040-1951(01)00187-1

  • Spreitzer, H., 1932. Zum Problem der Piedmonttreppe. Mitteilungen der Geographischen Gesellschaft Wien, 75, 327–364.

  • Šujan, M., Lačný, A., Braucher, R. Magdolen, P., and ASTER Team, 2017. Eearly Pleistocene age of fluvial sediments in the Stará Garda cave revealed by 26Al/10Be burial dating: implications for geomorphic evolution of the Male Karpaty Mts. (western Carpathians). Acta Carsologica, 46/2–3, 251–264. https://doi.org/10.3986/ac.v46i2-3.5157

  • Thiedig, F., van Husen, D., Pistotnik, J., 1999. Geological map of Austria 1:50,000, GK sheet 186 Sankt Veit an der Glan. Geologische Bundesanstalt, Wien.

  • Wagner, T., Fabel, D., Fiebig, M., Häuselmann, P., Sahy, D., Xu, S., Stüwe, K., 2010. Young uplift in the non-glaciated parts of the Eastern Alps. Earth and Planetary Science Letters, 295, 159–169. https://doi.org/10.1016/j.epsl.2010.03.034

  • Wagner, T., Fritz, H., Stüwe, K., Nestroy, O., Rodnight, H., Hellstrom, J., Benischke, R., 2011. Correlations of cave levels, stream terraces and planation surfaces along the river Mur-Timing of landscape evolution along the eastern margin of the Alps. Geomorphology, 134/1–2, 62–78. https://doi.org/10.1016/j.geomorph.2011.04.024

  • Weiss, E.H., 1977. Zur Hydrogeologie des Grundwasseraustrittes der Gurk unterhalb der Prekowa (Tiebelur-sprung). Carinthia II, 167/87, 95–104.

  • Whipple, K.X., Tucker, G.E., 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Earth Surface, 104/B8, 17,661–17,674. https://doi.org/10.1029/1999JB900120

  • Winkler-Hermaden, A., 1955. Ergebnisse und Probleme der Quartären Entwicklungsgeschichte am östlichen Alpensaum außerhalb der Vereisungsgebiete. Österreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Denkschriften, 110, pp. 180.

  • Winkler-Hermaden, A., 1957. Geologisches Kräftespiel und Landformung. Springer, Wien, pp. 822.

  • Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., Sheehan, D., 2006. Tectonics from topography: Procedures, promise, and pitfalls. Geological Society of America, 398, 55–74. https://doi.org/10.1130/2006.2398(04)

  • Wölfler, A., Kurz, W., Fritz, H., Stüwe, K., 2011. Lateral extrusion in the Eastern Alps revisited: Refining the model by thermochronological, sedimentary, and seismic data. Tectonics, 30/4, 1–15. https://doi.org/10.1029/2010TC002782

  • Wölfler, A., Stüwe, K., Danisik, M., Evans, N.J., 2012. Low temperature thermochronology in the Eastern Alps: Implications for structural and topographic evolution. Tectonophysics, 541–543, 1–18. https://dx.doi.org/10.1016%2Fj.tecto.2012.03.016

  • Zeilinger, G., Kuhlemann, J., Reinecker, J., Kazmer, M., Frisch, W., 1999. Das Tamsweger Tertiär im Lungau (Österreich): Fazies und Deformation eines intramontanen Beck-ens. Neues Jahrbuch für Geologie und Paläontologie— Abhandlungen, 214/3, 537–569.


Journal + Issues