The Alland earthquake sequence in Eastern Austria: Shedding light on tectonic stress geometry in a key area of seismic hazard

Abstract

We present our results on the fault geometry of the Alland earthquake sequence in eastern Austria (Eastern Alps) and discuss its implications for the regional stress regime and active tectonics. The series contains 71 known events with local magnitudes 0.1 ≤ ML ≤ 4.2 that occurred in between 2016 and 2017. We locate the earthquakes in a regional 3D velocity model to find absolute locations. These locations are then refined by relocating all events relative to each other using a double-difference approach, based on relative travel times measured from waveform cross-correlation and catalogue data. We also invert for the moment tensor of the ML = 4.2 mainshock by fitting synthetic waveforms to the recorded seismo-grams using a combination of the L1- and L2-norms of the waveform differences. Direct comparison of waveforms of the largest events in the sequence suggests that all of them ruptured with very similar mechanisms. We find that the sequence ruptured a reverse fault, that is dipping with ~30° towards ~north-northeast (NNE) at 6–7 km depth. This is supported by both the hypocentres and the mainshock source mechanism. The fault is most likely located in the buried basement of the Bohemian massif, the “Bohemian Spur”. This (reverse) fault has a nearly perpendicular orientation to the normal-fault structures of the Vienna Basin Transfer Fault System further east at a shallower depth, indicating a lateral stress decoupling that can also act as a vertical stress decoupling in some places. In the west, earthquakes (at a larger depth within the upper crust) show compressive stresses, whereas the Vienna Basin to the east shows extensional (normal-faulting) stress. This provides insight into the regional stress field and its spatial variation, and it helps to better understand earthquakes in the area, including the “1590 Ried am Riederberg” earthquake.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AEC, 2018. Austrian Earthquake Catalogue from 1000 to 2018 A.D., Unpublished computer file, Zentralanstalt für Meteorologie und Geodynamik, Section Seismology, Division Data, Methods, Modeling, 1190 Wien, Hohe Warte 38, Austria

  • Abercrombie, R.E., Bannister, S., Pancha, A., Webb, T.H., Mori, J.J., 2001. Determination of fault planes in a complex aftershock sequence using two-dimensional slip inversion. Geophysical Journal International, 146, 134–142. https://doi.org/10.1046/j.0956-540x.2001.01432.x

  • Allmann, B.P., Shearer, P.M., 2009. Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114/24, 015–22. https://doi.org/10.1029/2008JB005821

  • AlpArray Seismic Network, 2015. AlpArray Seismic Network, AlpArray Working Group. https://doi.org/10.12686/alparray/z3_2015

  • Apoloner, M.-T., Bokelmann, G., Bianchi, I., Brückl, E., Hausmann, H., Mertl, S., Meurers, R., 2014: The 2013 Earthquake Series in the Southern Vienna Basin: location. Advances in Geosciences, 36, 77–80. https://doi.org/10.5194/adgeo-36-77-2014

  • April 2019 seismicity report by Zentralanstalt für Mete-orologie und Geodynamik (ZAMG). http://www.zamg.ac.at/geophysik/Reports/Monatsberichte/K19-04.pdf (accessed on 11 November 2019)

  • Aschk, K., 2005. IGME 5000: 1: 5 Million International Geological Map of Europe and Adjacent Areas, BGR.

  • Austrian Seismic Network, 1987. Austrian Seismic Network, International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OE

  • Bada, G., Horváth, F., Dövényi, P., Szafián, P., Windhoffer, G., Cloetingh, S., 2007. Present-day stress field and tectonic inversion in the Pannonian basin. Global and Planetary Change, 58, 165–180. https://doi.org/10.1016/j.gloplacha.2007.01.007

  • Bartosch, T., Stüwe, K., Robl, J., 2017. Topographic evolution of the Eastern Alps: The influence of strike-slip faulting activity. Lithosphere, 9, 384–398. https://doi.org/10.1130/L594.1

  • Behm, M., Brückl, E., Chwatal, W., Thybo, H., 2007. Application of stacking and inversion techniques to three-dimensional wide-angle reflection and refraction seismic data of the Eastern Alps. Geophysical Journal International, 170, 275–298. https://doi.org/10.1111/j.1365-246X.2007.03393.x

  • Brandmayr, M., Dallmeyer, R.D., Handler R., Wallbrecher E., 1995. Conjugate shear zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics, 248, 1-2, 97–116

  • Bukchin, B.G., 2006. Specific features of surface wave radiation by a shallow source. Izvestiya, Physics of the Solid Earth, 42, 712–717. https://doi.org/10.1134/S1069351306080088

  • Bukchin, B., Clévédé, E., Mostinskiy, A., 2010. Uncertainty of moment tensor determination from surface wave analysis for shallow earthquakes. Journal of Seismology, 14, 601–614, Springer Netherlands. https://doi.org/10.1007/s10950-009-9185-8

  • Bulut, F., Bohnhoff, M., Aktar, M., Dresen, G., 2007, Characterization of aftershock-fault plane orientations of the 1999 İzmit (Turkey) earthquake using high-resolution aftershock locations. Geophysical Research Letters, 34, L20306. https://doi.org/10.1029/2007GL031154

  • Caffagni, E., Eaton, D.W., Jones, J.P., van der Baan, M., 2016. Detection and analysis of microseismic events using a Matched Filtering Algorithm (MFA). Geophysical Journal International, ggw168. https://doi.org/10.1093/gji/ggw168

  • Crotwell, H.P., Owens, T.J., Ritsema, J., 1999. The TauPToolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70, 154–160. https://doi.org/10.1785/gssrl.70.2.154

  • Czech Regional Seismic Network, 1973. Czech Regional Seismic Network, International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CZ

  • Decker, K., Peresson, H., Hinsch, R., 2005. Active tectonics and Quaternary basin formation along the Vienna Basin Transfer fault. Quaternary Science Reviews, 24/3-4, 305–320. https://doi.org/10.1016/j.quascirev.2004.04.012

  • Duputel, Z., Rivera, L., Kanamori, H., Hayes, G., 2012. W phase source inversion for moderate to large earthquakes (1990-2010). Geophysical Journal International, 189, 1125–1147, Oxford University Press. https://doi.org/10.1111/j.1365-246X.2012.05419.x

  • Eshelby, J.D., 1957. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 241, 376–396, The Royal Society. https://doi.org/10.1098/rspa.1957.0133

  • Godey, S., Bossu, R., Guilbert, J., Mazet-Roux, G., 2006. The Euro-Mediterranean Bulletin: A Comprehensive Seismological Bulletin at Regional Scale. Seismological Research Letters, 77, 460–474. https://doi.org/10.1785/gssrl.77.4.460

  • Gutdeutsch, R., Aric, K., 1988. Seismicity and neotectonics of the East Alpine-Carpathian and Pannonian Area. In: Royden, L.H. (ed.), The Pannonian Basin: A Study in Basin Evolution/Book and Maps. AAPG Memoir 45, pp. 183–194.

  • Gutdeutsch, R., Hammerl, C., Mayer, I., Vocelka, K., 1987. Erdbeben als historisches Ereignis: Die Rekonstruktion des Bebens von 1590 in Niederösterreich. Springer- Verlag Berlin Heidelberg, 223 pp.

  • Hammerl, C., 2017. Historical earthquake research in Austria. Geoscience Letters, 4, 1–13. https://doi.org/10.1186/s40562-017-0073-8

  • Hanks, T.C., Kanamori, H., 1979. A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350. https://doi.org/10.1029/JB084iB05p02348

  • Harris, D.B., 2006. Subspace Detectors: Theory, Lawrence Livermore National Laboratory Technical Report. https://doi.org/10.2172/900081

  • Heidbach, O., Custodio, S., Kingdon, A., Mariucci, M.T., Montone, P., Müller, B., Pierdominici, S., et al., 2016. Stress Map of the Mediterranean and Central Europe 2016, GFZ Data Service. https://doi.org/10.5880/WSM.Europe2016

  • Herrmann, R.B., 2013. Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismological Research Letters, 84, 1081–1088. https://doi.org/10.1785/0220110096

  • Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I., Crawford, W.C., Dessa, J.-X., et al., 2018. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen. Surveys in Geophysics, 39, 1–25. https://doi.org/10.1007/s10712-018-9472-4

  • Hungarian National Seismological Network, 1995. Hungarian National Seismological Network, Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/UH028726

  • Jolivet, L., Faccenna, C., Goffé, B., Burov, E., Agard, P., 2003. Subduction Tectonics and Exhumation of High- Pressure Metamorphic Rocks in the Mediterranean Orogen. American Journal of Science, 303, 353–409. https://doi.org/10.2475/ajs.303.5.353

  • Kagan, Y.Y., 1991. 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106, 709–716. https://doi.org/10.1111/j.1365-246X.1991.tb06343.x

  • Kennet, B.L.N., 1991. IASPEI 1991 Seismological Tables. Terra Nova, 3, 122–122. https://doi.org/10.1111/j.1365-3121.1991.tb00863.x

  • Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., Wassermann, J., 2015. ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science and Discovery, 8, IOP Publishing. https://doi.org/10.1088/1749-4699/8/1/014003

  • Lee, E.Y., Wagreich, M., 2016. 3D visualization of the sedimentary fill and subsidence evolution in the northern and central Vienna Basin (Miocene), Austrian Journal of Earth Sciences, 109/2, 241–251

  • Lentas, K., Di Giacamo, D., Harris, J., Storchak, D.A., 2019. The ISC Bulletin as a comprehensive source of earthquake source mechanisms. Earth System Science Data, 11, 565–578, International Seismological Centre. https://doi.org/10.5194/essd-11-565-2019

  • Lippitsch, R., Kissling, E., Ansorge, J., 2003. Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. Journal of Geophysical Research, 108, 2376. https://doi.org/10.1029/2002JB002016

  • Lomax, A., Virieux, J., Volant, P., Berge-Thierry, C., 2000. Probabilistic Earthquake Location in 3D and Layered Models. in Advances in Seismic Event Location, 18, 101–134. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_5

  • Malusà, M.G., Faccenna, C., Baldwin, S.L., Fitzgerald, P.G., Rossetti, F., Balestrieri, M.L., Danišík, M., et al., 2015. Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochemistry, Geophysics, Geosystems, 16, 1786–1824. https://doi.org/10.1002/2015GC005767

  • Marsch, F. Wessely, G., Sackmaier, W., 1990, Borehole breakouts as geological indications of crustal tension in the Vienna Basin. In: Rossmanith, P. (ed.), Mechanics of Joined and Faulted Rock. A.A. Balkema, Rotterdam, pp. 113–120.

  • Mendoza, C., Hartzell, S., 1988. Aftershock patterns and main shock faulting. Bulletin of the Seismological Society of America, 78/4, 1438–1449.

  • Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A., Keller, G.R., Koslovskaya, E., et al., 2011. Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model. Tectonophysics, 510, 195–206. https://doi.org/10.1016/j.tecto.2011.07.001

  • Omori, F., 1894. On the aftershocks of earthquakes. Journal of the College of Science, Imperial University of Tokyo, 7, 111–200.

  • National Network of Seismic Stations of Slovakia, 2004. National Network of Seismic Stations of Slovakia, Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/FX099882

  • Peresson, H., Decker, K., 1997. The Tertiary dynamics of the northern Eastern Alps (Austria): changing palaeostresses in a collisional plate boundary. Tectonophysics, 272, 125–157. https://doi.org/10.1016/S0040-1951(96)00255-7

  • Podvin, P., Lecomte, I., 1991. Finite difference computation of travel times in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International, 105, 271–284. https://doi.org/10.1111/j.1365-246X.1991.tb03461.x

  • Prejean, S., Ellsworth, W., Zoback, M., Waldhauser, F., 2002. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions. Journal of Geophysical Research: Solid Earth, 107/B12, 2355. https://doi.org/10.1029/2001JB001168

  • Ratschbacher, L., Merle, O., Davy, P., Cobbold, P., 1991. Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity. Tectonics, 10, 245–256. https://doi.org/10.1029/90TC02622

  • Reinecker, J., Lenhardt, W.A., 1999. Present-day stress field and deformation in eastern Austria. International Journal of Earth Sciences/Geologische Rundschau, 88, 532–550. https://doi.org/10.1007/s005310050283

  • Reinecker, J., Tingay, M., Müller, B., Heidbach, O., 2010. Present-day stress orientation in the Molasse Basin. Tectonophysics, 482, 129–138. https://doi.org/10.1016/j.tecto.2009.07.021

  • Robl, J., Stüwe, K., 2005. Continental collision with finite indenter strength: 2. European Eastern Alps. Tectonics, 24, TC4014. https://doi.org/10.1029/2004TC001741

  • Rubin, A.M., Gillard, D., Got, J.-L., 1999. Streaks of microearthquakes along creeping faults. Nature, 400, 635–641. https://doi.org/10.1038/23196

  • Saint Louis University, 2016. Moment Tensor Solution for the 25.04.2016 Alland earthquake. http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160425102823/index.html (accessed on 11 November 2019)

  • Schaff, D.P., Bokelmann, G.H.R., Beroza, G.C., Wald-hauser, F., Ellsworth, W.L., 2002. High-resolution image of Calaveras Fault seismicity. Journal of Geophysical Research: Solid Earth, 107(B9), 2186. https://doi.org/10.1029/2001JB000633

  • Schippkus, S., Zigone, D., Bokelmann, G., the AlpArray Working Group, 2018. Ambient-noise tomography of the wider Vienna Basin region. Geophysical Journal International, 215, 102–117. https://doi.org/10.1093/gji/ggy259

  • Schmid, S.M., Fügenschuh, B., Kissling, E., Schuster, R., 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97, 93–117. https://doi.org/10.1007/s00015-004-1113-x

  • Seismic Network of the Republic of Slovenia, 2001. Seismic Network of the Republic of Slovenia, International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/SL

  • Strasser, M., Anselmetti, F.S., Fäh, D., Giardini, D., Schnell-mann, M., 2006. Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology, 34/12, 1005–1008. https://doi.org/10.1130/G22784A.1

  • Šílený, J., 2004. Regional moment tensor uncertainty due to mismodeling of the crust. Tectonophysics, 383, 133–147. https://doi.org/10.1016/j.tecto.2003.12.007

  • Sun, W., Zhao, L., Malusà, M.G., Guillot, S., Fu, L.-Y., 2019. 3-D Pn tomography reveals continental subduction at the boundaries of the Adriatic microplate in the absence of a precursor oceanic slab. Earth and Planetary Science Letters, 510, 131–141. https://doi.org/10.1016/j.epsl.2019.01.012

  • Waldhauser, F., 2001. hypoDD – A Program to Compute Double-Difference Hypocenter Locations. USGS Open File Rep., 01-113, 2001.

  • Waldhauser, F., Ellsworth, W.L., 2000. A Double- difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90, 1353–1368.

  • Waldhauser, F., Schaff, D.P., 2008. Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods. Journal of Geophysical Research: Solid Earth, 113, 501–15. https://doi.org/10.1029/2007JB005479

  • Wessely, G., 2006. Geologie der Österreichischen Bundesländer: Niederösterreich, Wien: Geologische Bundesanstalt.

  • Wölfler, A., Kurz, W., Fritz, H., Stüwe, K., 2011. Lateral extrusion in the Eastern Alps revisited: Refining the model by thermochronological, sedimentary, and seismic data. Tectonics, 30, TC4006. https://doi.org/10.1029/2010TC002782

  • Zhao, L.-S., Helmberger, D.V., 1994. Source Estimation from Broadband Regional Seismograms. Bulletin of the Seismological Society of America, 84, 91–104.

  • Zhu, L., Helmberger, D.V., 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86, 1634–1641.

OPEN ACCESS

Journal + Issues

Search