Is hydrotectonics influencing the thermal spring in Eisensteinhöhle (Bad Fischau, Lower Austria)?


Eisensteinhöhle is a 2 km long crevice cave that is significantly overprinted by hydrothermal karst processes. It was opened during quarrying in the Fischauer Vorberge, at the western margin of the Vienna Basin. This pull-apart basin cuts the eastern foothills of the Alps and is formed by a major NE-SW striking, sinistral transform fault. The western margin consists of NNE-SSW striking normal faults creating paths for thermal water to rise from the central basin. The deepest part of the cave, 73 m below the entrance, hosts a pond with 14.6 ±0.2 °C warm water that occasionally acts as a spring. The water level and temperature fluctuate and at a certain level, water visibly discharges into a nearby narrow fissure. As sporadic observations of the water level since 1992 gave no obvious connection to precipitation events, the connection to an aquifer and the origin of the water remained unknown. A pumping test, conducted on 13/7/2016, yielded a volume of the spring/pool of about 2.8 m3 that is fed by a very small inlet at the sandy bottom. At the time of the pumping test, the discharge was only 4.5 l/h but during previous overflow events, discharge values of up to 289 l/h were recorded.

Water temperature and hydrochemistry hint towards a mixture of an old thermal component and a young meteoric component. During continuous monitoring of water level and temperature from October 2015 until November 2018, the water level was almost stable with few periods of high level (almost at overflow) that lasted for about 3 to 4 weeks each. The water temperature increased during most high stands and is positively correlated with the water level. Correlation of the high-resolution data on water level and temperature fluctuations with precipitation measurements at the nearest meteorological stations show a relation of water level to certain rainfall events and the sporadically taken long time records show a correlation with annual precipitation sums. Long-term observations also indicate a connection to groundwater levels in the Vienna Basin with a delay of about 8 weeks in Bad Fischau. In July 2017, the water level dropped suddenly and then recovered simultaneously in the time of several weak earthquakes in the vicinity. The data suggest that the spring in Eisensteinhöhle is influenced by precipitation. For one seismic event, there is a correlation with unusual water level changes at Eisensteinhöhle, but the rareness of earthquakes demands for a longer time series to confirm this observation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AEC, 2019. Austrian Earthquake Catalogue – Computer file. Seismological Service of Austria, Department of Geophysics, Zentralanstalt für Meteorologie und Geodynamik (ZAMG).

  • Baroň, I., Plan, L., Grasemann, B., Mitrovic, I., Lenhardt, W., Hausmann, H., Stemberk, J., 2016. Can deep-seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps. Geomorphology, 259, 81–89.

  • Baroň, I., Plan, L., Sokol, L., Grasemann, B., Melichar, R., Mitrovic, I, Stemberk, J., 2019. Present-day kinematic behaviour of active faults in the Eastern Alps. Tectonophysics, 752: 1–23.

  • Brix, F., Plöchinger, B., 1982. Wiener Neustadt 1:50000. In: Geologische Bundesanstalt. Geologische Karte der Republik Österreich 1:50000, 76, Verlag der Geologischen Bundesanstalt, Vienna.

  • Brodsky, E.E., 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. Journal of Geophysical Research, 108/B87, 2390.

  • Cox, S.C., Menzies, C.D., Sutherland, R., Denys, P.H., Chamberlain, C., Teagle, D.A.H., 2015. Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes. - Geofluids 15: 216–239.

  • Cooper, H., Bredehoeft, D.,Robert, R., 1965. The Response of Well-Aquifer Systems to Seismic Waves. Journal of Geophysical Research, 70/16, 3915–3926.

  • Decker, K., Peresson, H., Hinsch, R., 2005. Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault. Quaternary Science Reviews, 24, 307–322.

  • Elster, D., Goldbrunner, J., Wessely, G., Niederbacher, P., Schubert, G., Berka, R., Philippitsch, R., Hörhan, T., 2016. Erläuterungen zur geologischen Themenkarte Thermalwässer in Österreich 1:500000. Geolocigal Survey of Austria, Vienna, pp. 296.

  • Fenzl, N., 1977. Hydrogeologische Studie des Gebietes Hohe Wand und Fischauer Berge. Verhandlungen der Geologischen Bundesanstalt, 1977/2, 121–164.

  • Grünthal, G., Musson, R., Schwarz, J., Stucchi, M., 1998. European Macroseismic Scale 1998. Conseil de l’Europe - Cahiers du Centre Européen de Geodynamique et de Seismologie, 15, Centre Européen de Géodynamique et de Séismologie, Luxembourg, 99 pp.

  • Hammerl, C., Lehnhardt, W., 2013. Erdbeben in Niederösterreich von 1000 bis 2009 n. Chr. Abhandlungen der Geologischen Bundesanstalt, 67, 3–297.

  • Hartmann, H., Hartmann, W., 2000. Die Höhlen Niederösterreichs – Band 5. Die Höhle, Supplement 54.

  • Hinsch, R., Decker, K., 2003. Do seismic slip deficits indicate an underestimated earthquake potential along the Vienna Basin transfer fault system? Terra Nova, 15/5, 343–349.

  • Hock, R., 1948. Thermenwasser aus der Eisensteinhöhle bei Brunn an der Schneebergbahn. Unveröffentlichter Bericht, Wien.

  • Lai, G., Jiang, C., Han, L., Sheng, S., Ma, Y., 2016. Co-seismic water level changes in response to multiple large earthquakes at the LGH well in Sichuan, China. Tectonophysics, 679, 211–217.

  • Larsson, I., 1972. Ground water in granite rocks and tectonic models. Nordic Hydrology, 3, 111–129.

  • Menke, W., Menke, J., 2012. Environmental data analysis with Matlab. Elsevier, Oxford, pp. 288.

  • Michetti, A.M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., Mc Calpin, J., Mohammadioun, B., Mörner, N.A., Ota, Y., Roghozin, E., 2007. Environmental Seismic Intensity Scale ESI 2007. In Memorie descrittive della carta geologica D’Italia. L. Guerrieri & E. Vittori (ed.), Servizio Geologico d’Italia, Dipartimento Difesa del Suolo, APAT, Rome, Italy, 74, 7–54.

  • Mogi, K., Mochizuki, H., Kurokawa, Y., 1989. Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes. Tectonophysics, 159, 95–108.

  • Montgomery, D.R., Manga, M., 2003. Streamflow and Water Well Earthquakes. Science, 300, 2047–2049.

  • Mühlhofer, F., 1923. Die Eisensteinhöhle nächst Bad Fischau und Brunn am Steinfeld (Niederösterreich). Österreichischer Höhlenführer, 4, Wien.

  • Muir-Wood, R., King, G.C.P., 1993. Hydrological signatures of earthquake strain. Journal of Geophysical Research, 98/B12, 22035–22068.

  • Nagel, J.A. 1768. Ausführliche Nachricht von dem am 27ten Hornung dieses laufenden Jahrs 1768 in und um Wien erlittenen Erdbeben. Wien pp. 24.

  • Pavuza, R., Prohaska, W., Traindl, H., 1985. Blatt 76 – Wiener Neustadt. Karstverbreitungs- und Karstgefährdungskarten Österreichs 1:50000. Verband österreichischer Höhlenforscher, Wien, pp. 67.

  • Pirker, R., 1950. Temperaturbeobachtungen in der Eisensteinhöhle. Protokoll der 5. ordentl. Vollvers. d. Höhlenkomm, beim Bundesministerium f. Land- und Forstwirtschaft in Wien am 23. und 24. 10. 1950 in Peggau, Steiermark, Wien.

  • Plan, L., Pavuza, R., Seemann, R., 2006. Der Nasse Schacht bei Mannersdorf im Leithagebirge, NÖ (2911/21) – eine thermal beeinflusste Höhle am Ostrand des Wiener Beckens. Die Höhle, 57/1-4, 30–46.

  • Plan, L., Spötl, C., 2016. Hypogene Karsthöhlen. In: C. Spötl, L. Plan, E. Christian (ed.). Höhlen und Karst in Österreich, Oberösterreichisches Landesmuseum, Linz, 49–60.

  • Plöchinger, B., 1967. Erläuterungen zur Geologischen Karte des Hohe-Wand-Gebietes (Niederösterreich) 1:25.000, Verlag der Geologischen Bundesanstalt, Vienna, pp. 142.

  • Plöchinger, B., 1964. Geologische Karte des Hohe Wandgebietes (Niederösterreich) 1:25000. Geologische Bundesanstalt, Vienna.

  • Reinecker, J., Lenhardt, W.A., 1999. Present-day stress field and deformation in eastern Austria. International Journal of Earth Sciences, 88, 532–550.

  • Roeloffs, E.A., 1988. Hydrologic precursors to earthquakes: A review. Pure and Applied Geophysics, 126/2–4, 177–209.

  • Roeloffs, E.A., 1996. Poroelastic Techniques in the Study of Earthquake-Related Hydrologic Phenomena. Advances in Geophysics, 37, 135–195.

  • Rojstaczer, S., Wolft, S., Michel, R., 1995. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature, 237–239.

  • Royden, L.H., 1985. The Vienna Basin – A Thin-Skinned Pull-Apart Basin. In: Biddle, K.T. and Christie-Blick, N. (ed.). SEPM Special Publication 37: Strike-slip Deformation, Basin Formation and Sedimentation. SEPM, Tulsa, pp. 319–338.

  • Schenk, C. 1805. Taschenbuch für Badegeste Badens in Niederösterreich. Joseph Geistinger, Wien und Baden, 320 pp.

  • Schönwiese, C.-D., 2006. Praktische Statistik für Meteorologen und Geowissenschaftler, Gebrueder Borntraeger, 302 pp.

  • Shi, Y.L., Cao, J.L., Ma, L., Yin, B.J., 2007. Tele-seismic coseismic well temperature changes and their interpretation. Acta Seismologica Sinica English Edition, 20/3, 280–289.

  • Spötl, C., Plan, L., Dublyansky, Y., 2017. Hypogene Karst in Austria. In: Klimchouk, A., Palmer, A.N., de Waele, J., Auler, A.S., Audra, P. (eds.), Hypogene Karst Regions and Caves of the World, Springer, Cham, pp. 113-126.

  • Trauth, M., 2006. MATLAB® Recipes for Earth Sciences. Springer, Berlin, pp. 237.

  • Wang, C.-Y., Cheng, L.H., Chin, C.V., Yu, S.B., 2001. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology, 29/9, 831–834.<0831:CHROAA>2.0.CO;2

  • Wang, C.-Y., Manga, M., 2010. Earthquakes and Water. Lecture Notes in Earth Sciences 114. Springer, Heidelberg, 225 pp.

  • Wang, C.-Y., Manga, M., 2015. New streams and springs after the 2014 Mw6.0 South Napa earthquake. Nature Communications, 6, 1–6.

  • Weginger, S., Jia, Y., Isaba, M., Horn, N., 2017. Real-time Shakemap implementation in Austria. Geophysical Research Abstracts, 19, EGU2017-6624.

  • Wessely, G., 1983. Zur Geologie und Hydrodynamik im südlichen Wiener Becken und seiner Randzone. Mitteilungen der österreichischen geologischen Gesellschaft, 76, 27–68.

  • Wessely, G., 2006. Geologie der österreichischen Bundesländer – Niederösterreich. Verlag der Geologischen Bundesanstalt, Wien, pp. 416.

  • Wessely, G., Coric, S., Rögl, F., Draxler, I., Zorn, I., 2007. Geologie und Paläontologie von Bad Vöslau (Niederösterreich). Jahrbuch der Geologischen Bundesanstalt, 147, 419–448.

  • Winkler, G., 1992. Beobachtungen an der Thermalquelle in der Eisensteinhöhle (Niederösterreich), Die Höhle, 43, 96–98.

  • Wyss, M., Jackson, D.D., 1997. Cannot earthquakes be predicted? Science, 278, 487.

  • Zötl, J.G., 1997. The spa Deutsch-Altenburg and the hydrogeology of the Vienna basin (Austria). Environmental Geology, 29/3–4, 176–187.

  • ZAMG Zentralanstalt für Meteorologie und Geodynamik, 2019. Klimadaten von Österreich 1971-2000. (accessed on 5/2/2019).


Journal + Issues