Palynology, microfacies and ostracods of the Permian–Triassic boundary interval in the Rosengarten/Catinaccio Massif (Southern Alps, Italy)

Abstract

The Laurinswand section in the Rosengarten/Catinaccio Massif (Dolomites, Southern Alps, Italy) covers the Permian–Triassic boundary in a proximal marine setting. The section has been studied for palynology, ostracods and carbonate microfacies. Five microfacies types are defined for the carbonates of the Bellerophon Formation (Changhsingian) in this section. Ostracod assemblages from the upper Bellerophon Formation show a moderate to high diversity and mostly indicate normal marine conditions, with some samples from the upper Casera Razzo Member being dominated by eurytopic forms. The ostracod fauna follows transgressive-regressive trends with low diverse assemblages occurring in the regressive parts. These trends are also reflected in the microfacies and can be assigned to three sequences. Palynological assemblages are dominated by phytoclasts, which is typical for proximal marine environments. Sporomorphs are represented predominantly by bisaccate and asaccate pollen grains and are mostly minor components of the palynofacies. Other minor, but consistent components in the Bellerophon Formation are acritarchs, Reduviasporonites and unidentified possible algae or fungi. The latter are particularly abundant in samples with ostracod faunas indicating restricted conditions. The Werfen Formation (uppermost Permian to Lower Triassic) yielded quantitatively poor palynological assemblages, with one sample from the Tesero Member showing a notable increase in spores and spore tetrads. This is indicative of the so-called “spore spike”, a well-known signal from this interval. One sample from the overlying Mazzin Member demonstrated a high relative abundance of Reduviasporonites, which may be related to mass occurrences of this taxon in the Tesero Member at Tesero and at other localities near the Permian–Triassic boundary. Such a mass occurrence normally pre-dates the spore spike, whereas at the Laurinswand, the former post-dates the latter considerably.

Das Profil an der Laurinswand im Rosengarten/Catinaccio-Massif (Dolomiten, Südalpen, Italien) umfasst die Perm-Trias-Grenze in einem proximalen, marinen Milieu. Das Profil wurde auf Palynologie, Ostrakodenfaunen und Karbonat-Mikrofazies untersucht. Fünf Mikrofaziestypen wurden für die Karbonate der Bellerophon-Formation (Changhsingium) definiert. Ostrakodenvergesellschaftungen aus der oberen Bellerophon-Formation weisen eine mittlere bis hohe Diver-sität auf und deuten überwiegend auf normalmarine Bedingungen hin, allerdings werden einige Proben aus dem oberen Casera-Razzo-Member von eurytopen Formen dominiert. Die Ostrakodenfauna folgt transgressiv-regressiven Trends, wobei weniger diverse Faunen in den regressiven Teilen auftreten. Diese Trends sind auch in der Mikrofazies reflektiert und können drei Sequenzen zugeordnet werden. Palynologische Rückstände werden von Phytoklasten dominiert, was typisch für ein proximales, marines Ablagerungsmilieu ist. Sporomorphe sind vor allem durch bisaccate und asaccate Pollenkörner vertreten und sind meist untergeordnete Komponenten der Palynofazies. Weitere untergeordnete, aber stetig auftretende Komponenten in der Bellerophon-Formation sind Akritarchen, Reduviasporonites und nicht identifizierte, mögliche Algen oder Pilzreste. Letztere sind besonders häufig in Proben, deren Ostrakodenfauna eingeschränkt marine Bedingungen anzeigt. Die Werfen-Formation (oberstes Perm bis Untertrias) lieferte wenige palynologische Rückstände, wobei eine Probe aus dem Tesero-Member einen bemerkenswerten Anstieg in der Häufigkeit von Sporen und Sporen-Tetraden aufwies. Dies ist ein Hinweis auf den sogenannten „spore spike“, ein bekanntes Signal aus diesem Zeitintervall. Eine Probe des darüber liegenden Mazzin-Members beinhaltete eine relativ große Menge an Reduviasporonites, was mit Massenvorkommen dieses Taxons nahe der Perm-Trias-Grenze, im Tesero-Member in Tesero und an anderen Orten, zusammenhängen könnte. Ein solches Massenvorkommen liegt normalerweise unterhalb des „spore spike“, wohingegen es an der Laurinswand deutlich darüber liegt.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Afonin, S.A., Barinova, S.S., Krassilov, V.A., 2001. A bloom of Tympanicysta Balme (green algae of zygnematalean affinities) at the Permian–Triassic boundary. Geodiversitas, 23/4, 481–487.

  • Algeo, T.J., Chen, Z.-Q., Bottjer, D.J., 2015. Global review of the Permian–Triassic mass extinction and subsequent recovery: Part II. Earth-Science Reviews, 149, 1–4. https://doi.org/10.1016/j.earscirev.2015.09.007

  • Balme, B.E., 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–323. https://doi.org/10.1016/0034-6667(95)93235-X

  • Benca, J.P., Duijnstee, I.A.P., Looy, C.V., 2018. UV-B–induced forest sterility: Implications of ozone shield failure in Earth’s largest extinction. Science Advances, 4/2, e1700618. https://doi.org/10.1126/sciadv.1700618

  • Benton, M.J., Newell, A.J., 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research, 25/4, 1308–1337. https://doi.org/10.1016/j.gr.2012.12.010

  • Benton, M.J., Twitchett, R.J., 2003. How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology & Evolution, 18/7, 358–365. https://doi.org/10.1016/S0169-5347(03)00093-4

  • Benton, M.J., Tverdokhlebov, V.P., Surkov, M.V., 2004. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature, 432, 97–100. https://doi.org/10.1038/nature02950

  • Bercovici, A., Cui, Y., Forel, M.-B., Yu, J., Vajda, V., 2015. Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences, 98, 225–246. https://doi.org/10.1016/j.jseaes.2014.11.016

  • Bercovici, A., Vajda, V., 2016. Terrestrial Permian – Triassic boundary sections in South China. Global and Planetary Change, 143, 31–33. https://doi.org/10.1016/j.gloplacha.2016.05.010

  • Boschetti, F., 2010. Sedimentologische und Geochemische Untersuchung der Bellerophon- und Werfen-Formation im Raum Westliche Dolomiten. Unpublished Diploma Thesis, University of Innsbruck, Innsbruck, Austria, 78 pp.

  • Brack, P., Kustatscher, E., 2013. Voltzia recubariensis from the uppermost Angolo Limestone of the Bagolino succession (Southern Alps of Eastern Lombardy, Italy). Geo. Alp, 10, 61–70.

  • Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., Farabegoli, E., 2012. The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, 322–323, 121–144. https://doi.org/10.1016/j.chemgeo.2012.06.015

  • Brandner, R., Horacek, M., Keim, L., Scholger, R., 2009. The Pufels/Bulla road section: Deciphering environmental changes across the Permian-Triassic boundary to the Olenekian by integrated litho-, magneto- and isotope stratigraphy. A field trip guide. Geo.Alp, 6, 116–132.

  • Broglio Loriga, C., Góczán, F., Haas, J., Lenner, K., Neri, C., Oravecz-Scheffer, A., Posenato, R., Szabo, I., Tóth-Makk, Á., 1990. The Lower Triassic sequences of the Dolomites (Italy) and Transdanubian mid-mountains (Hungary) and their correlation. Memorie di Scienze Geologiche, 42, 41–103.

  • Broglio Loriga, C., Neri, C., Pasini, M., Posenato, R., 1988. Marine fossil assemblages from Upper Permian to lowermost Triassic in the Western Dolomites (Italy). Memorie della Società Geologica Italiana, 34, 5–44.

  • Chen, Z.-Q., Algeo, T.J., Bottjer, D.J., 2014. Global review of the Permian–Triassic mass extinction and subsequent recovery: Part I. Earth-Science Reviews, 137, 1–5. https://doi.org/10.1016/j.earscirev.2014.05.007

  • Cirilli, S., Pirini Radrizzani, C., Ponton, M., Radrizzani, S., 1998. Stratigraphical and palaeoenvironmental analysis of the Permian–Triassic transition in the Badia Valley (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 85–113. https://doi.org/10.1016/S0031-0182(97)00123-5

  • Clement-Westerhof, J.A., 1974. In situ pollen from gymnospermous cones from the Upper Permian of the Italian Alps — A preliminary account. Review of Palaeobotany and Palynology, 17, 63–73. https://doi.org/10.1016/0034-6667(74)90092-X

  • Clement-Westerhof, J.A., 1987. Aspects of Permian palaeobotany and palynology, VII. The Majonicaceae, a new family of Late Permian conifers. Review of Palaeobotany and Palynology, 52, 375–402. https://doi.org/10.1016/0034-6667(87)90066-2

  • Crasquin, S., Perri, M.C., Nicora, A., De Wever, P., 2008. Ostracods across the Permian-Triassic boundary in Western Tethys: the Bulla parastratotype (Southern Alps, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 114/2, 233–262.

  • Cui, Y., Bercovici, A., Yu, J., Kump, L.R., Freeman, K.H., Su, S., Vajda, V., 2017. Carbon cycle perturbation expressed in terrestrial Permian–Triassic boundary sections in South China. Global and Planetary Change, 148, 272–285. https://doi.org/10.1016/j.gloplacha.2015.10.018

  • Elsik, W.C., 1999. Reduviasporonites Wilson 1962: Synonymy of the fungal organism involved in the late Permian crisis. Palynology, 23/1, 37–41. https://doi.org/10.1080/01916122.1999.9989519

  • Erwin, D.H., 1994. The Permo-Triassic extinction. Nature, 367, 231–236. https://doi.org/10.1038/367231a0

  • Eshet, Y., Rampino, M.R., Visscher, H., 1995. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology, 23/11, 967–970.

  • Farabegoli, E., Perri, M.C., Posenato, R., 2007. Environmental and biotic changes across the Permian–Triassic boundary in western Tethys: The Bulla parastratotype, Italy. Global and Planetary Change, 55, 109–135. https://doi.org/10.1016/j.gloplacha.2006.06.009

  • Flügel, E., 2004. Microfacies of carbonate rocks: analysis, interpretation and application. Springer Verlag, Berlin, Heidelberg, 984 pp.

  • Foster, W.J., Danise, S., Price, G.D., Twitchett, R.J., 2017. Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy. PLOS ONE, 12/3, e0172321. https://doi.org/10.1371/journal.pone.0172321

  • Foster, C.B., Stephenson, M.H., Marshall, C., Logan, G.A., Greenwood, P.F., 2002. A revision of Reduviasporonites Wilson 1962: Description, illustration, comparison and biological affinities. Palynology, 26/1, 35–58. https://doi.org/10.2113/0260035

  • Grauvogel-Stamm, L., 1978. La Flore du Grès à Voltzia (Buntsandstein supérieur) des Vosges du Nord (France): Morphologie, Anatomie, Interprétations Phylogénique et Paléogéographique. Sciences Géologiques, Mémoire 50, Institut de Géologie, Strasbourg, France, 225 pp.

  • Grenfell, H.R., 1995. Probable fossil zygnematacean algal spore genera. Review of Palaeobotany and Palynology, 84, 201–220. https://doi.org/10.1016/0034-6667(94)00134-6

  • Groves, J.R., Rettori, R., Payne, J.L., Boyce, M.D., Altiner, D., 2007. End-Permian mass extinction of lagenide foraminifers in the Southern Alps (northern Italy). Journal of Palaeontology, 81/3, 415–434. https://doi.org/10.1666/05123.1

  • Hermann, E., Hochuli, P.A., Bucher, H., Brühwiler, T., Hautmann, M., Ware, D., Roohi, G., 2011. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Research, 20, 630–637. https://doi.org/10.1016/j.gr.2011.01.008

  • Hochuli, P.A., 2016. Interpretation of “fungal spikes” in Permian-Triassic boundary sections. Global and Planetary Change, 144, 48–50. https://doi.org/10.1016/j.gloplacha.2016.05.002

  • Hochuli, P.A., Hermann, E., Vigran, J.O., Bucher, H., Weissert, H., 2010. Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Global and Planetary Change, 74, 144–155. https://doi.org/10.1016/j.gloplacha.2010.10.004

  • Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H., Hautmann, M., 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 216–226. https://doi.org/10.1016/j.palaeo.2011.07.014

  • Hofmann, R., Hautmann, M., Brayard, A., Nützel, A., Bylund, K.G., Jenks, J.F., Vennin, E., Olivier, N., Bucher, H., 2014. Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology, 57/3, 547–589. https://doi.org/10.1111/pala.12076

  • Hofmann, R., Hautmann, M., Bucher, H., 2015. Recovery dynamics of benthic marine communities from the Lower Triassic Werfen Formation, northern Italy. Lethaia, 48/4, 474–496. https://doi.org/10.1111/let.12121

  • Horacek, M., Povoden, E., Richoz, S., Brandner, R., 2010. High-resolution carbon isotope changes, litho- and magnetostratigraphy across Permian-Triassic Boundary sections in the Dolomites, N-Italy. New constraints for global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 58–64. https://doi.org/10.1016/j.palaeo.2010.01.007

  • Jansonius, J., 1962. Palynology of Permian andTriassic sediments, Peace River area, western Canada. Palaeontographica Abteilung B, 110, 35–98.

  • Kearsey, T., Twitchett, R.J., Price, G.D., Grimes, S.T., 2009. Isotope excursions and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 279, 29–40. https://doi.org/10.1016/j.palaeo.2009.04.015

  • Kelber, K.-P., Van Konijnenburg-van Cittert, J.H.A., 1998. Equisetites arenaceus from the Upper Triassic of Germany with evidence for reproductive strategies. Review of Palaeobotany and Palynology, 100/1, 1–26. https://doi.org/10.1016/S0034-6667(97)00061-4

  • Klaus, W., 1963. Sporen aus dem südalpinen Perm (Vergleichsstudie für die Gliederung nordalpiner Salzserien). Jahrbuch der Geologischen Bundesanstalt, 106, 229–361.

  • Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S., Fischer, W.W., 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256/3, 295–313. https://doi.org/10.1016/j.epsl.2007.02.018

  • Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, B., Sephton, M.A., 2004. Geochemistry of the end-Permian extinction event in Austria and Italy: No evidence for an extraterrestrial component. Geology, 32, 1053–1056. https://doi.org/10.1130/G20907.1

  • Korte, C., Kozur, H.W., 2010. Carbon-isotope stratigraphy across the Permian–Triassic boundary: A review. Journal of Asian Earth Sciences, 39, 215–235. https://doi.org/10.1016/j.jseaes.2010.01.005

  • Kraus, S.H., Brandner, R., Heubeck, C., Kozur, H.W., Struck, U., Korte, C., 2013. Carbon isotope signatures of latest Permian marine successions of the Southern Alps suggest a continental runoff pulse enriched in land plant material. Fossil Record, 16/1, 97–109. https://doi.org/10.1002/mmng.201300004

  • Kustatscher, E., Bernardi, M., Petti, F.M., Franz, M., Van Konijnenburg-van Cittert, J.H.A., Kerp, H., 2017a. Sea-level changes in the Lopingian (late Permian) of the northwestern Tethys and their effects on the terrestrial palaeoenvironments, biota and fossil preservation. Global and Planetary Change, 148, 166–180. https://doi.org/10.1016/j.gloplacha.2016.12.006

  • Kustatscher, E., Van Konijnenburg-van Cittert, J.H.A., Looy, C.V., Labandeira, C.C., Wappler, T., Butzmann, R., Fischer, T.C., Krings, M., Kerp, H., Visscher, H., 2017b. The Lopingian (late Permian) flora from the Bletterbach Gorge in the Dolomites, Northern Italy: a review. Geo.Alp, 14, 39–61.

  • Kustatscher, E., Van Konijnenburg-van Cittert, J.H.A., Roghi, G., 2010. Macrofloras and palynomorphs as possible proxies for palaeoclimatic and palaeoecological studies: A case study from the Pelsonian (Middle Triassic) of Kühwiesenkopf/Monte Prà della Vacca (Olang Dolomites, N-Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 71–80. https://doi.org/10.1016/j.palaeo.2009.07.001

  • Looy, C.V., Hotton, C.L., 2014. Spatiotemporal relationships among Late Pennsylvanian plant assemblages: Palyno-logical evidence from the Markley Formation, West Texas, U.S.A. Review of Palaeobotany and Palynology, 211, 10–27. https://doi.org/10.1016/j.revpalbo.2014.09.007

  • Looy, C.V., Brugman, W.A., Dilcher, D.L., Visscher, H., 1999. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proceedings of the National Academy of Sciences, 96/24, 13857–13862. https://doi.org/10.1073/pnas.96.24.13857

  • Looy, C.V., Collinson, M.E., Van Konijnenburg-van Cittert, J.H.A., Visscher, H., Brain, A.P.R., 2005. The ultrastructure and botanical affinity of end-Permian spore tetrads. International Journal of Plant Sciences, 166/5, 875–887. https://doi.org/10.1086/431802

  • Looy, C.V., Twitchett, R.J., Dilcher, D.L., Van Konijnenburg-van Cittert, J.H.A., Visscher, H., 2001. Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences, 98/14, 7879–7883. https://doi.org/10.1073/pnas.131218098

  • Massari, F., Conti, M.A., Fontana, D., Helmold, K., Mariotti, N., Neri, C., Nicosia, U., Ori, G.G., Pasini, M., Pittau, P., 1988. The Val Gardena sandstone and Bellerophon Formation in the Bletterbach gorge (Alto Adige, Italy): biostratigraphy and sedimentology. Memorie di Scienze Geologiche, 40, 229–273.

  • Massari, F., Neri, C., Pittau, P., Fontana, D., Stefani, C., 1994. Sedimentology, palynostratigraphy and sequence stratigraphy of a continental to shallow-marine rift-related succession: Upper Permian of the eastern Southern Alps (Italy). Memorie di Scienze Geologiche, 46, 119–243.

  • Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., Müller, R.D., 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002

  • Mette, W., Roozbahani, P., 2012. Late Permian (Changsingian [sic]) ostracods of the Bellerophon Formation at Seis (Siusi) (Dolomites, Italy). Journal of Micropalaeontology, 31/1, 73–87. https://doi.org/10.1144/0262-821X11-010

  • Meyen, S.V., 1997. Permian conifers of Western Angaraland. Review of Palaeobotany and Palynology, 96/3, 351–447. https://doi.org/10.1016/S0034-6667(96)00046-2

  • Neri, C., 2007a. Formazione a Bellerophon. In Cita, M.B., Abbate, E., Conti, M.A., Falorni, P., Germani, D., Groppelli, G., Manetti, P., Petti, F.M. – Carta Geologica d’Italia – 1:50.000, Catalogo delle formazioni – Unità tradizionali. Quaderni del Servizio Geologico d’Italia, Series 3, 7/7, 64-73.

  • Neri, C., 2007b. Formazione di Werfen. In Cita, M.B., Abbate, E., Conti, M.A., Falorni, P., Germani, D., Groppelli, G., Manetti, P., Petti, F.M. – Carta Geologica d’Italia – 1:50.000, Catalogo delle formazioni – Unità tradizionali. Quaderni del Servizio Geologico d’Italia, Series 3, 7/7, 83-96.

  • Noé, S.U., 1987. Facies and paleogeography of the marine Upper Permian and of the Permian-Triassic boundary in the Southern Alps (Bellerophon Formation, Tesero Horizon). Facies, 16, 89–141. https://doi.org/10.1007/BF02536749

  • Onorevoli, G., Farabegoli, E., 2014. Modeling the paleogeography of north-western Palaeotethys across the Permian-Triassic boundary: constraints and possible solutions. GSTF International Journal of Geological Sciences (JGS), 1/2, 39–46. https://doi.org/10.5176/2335-6774_1.2.17

  • Pasini, M., 1981. Nota preliminare su una fauna ad ostracodi dei livelli superiori della Formazione a Bellerophon delle Dolomiti. Rivista Italiana di Paleontologia e Stratigrafia, 87/1, 1–22.

  • Pittau, P., 2001. Correlation of the upper Permian sporomorph complexes of the Southern Italian Alps with the Tatarian complexes of the stratotype region. Natura Bresciana, Annuario del Museo Civico di Scienze Naturale, Brescia, Monografia, 25, 109–116.

  • Posenato, R., 2009. Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 150–167. https://doi.org/10.1016/j.palaeo.2009.06.009

  • Posenato, R., 2010. Marine biotic events in the Lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geological Journal, 45, 195–215. https://doi.org/10.1002/gj.1212

  • Posenato, R., 2019. The end-Permian mass extinction (EPME) and the Early Triassic biotic recovery in the western Dolomites (Italy): state of the art. Bollettino della Società Paleontologica Italiana, 58, 11–34. https://doi.org/10.4435/BSPI.2019.05

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/ (accessed on 22 October 2018).

  • Raine, J.I., Mildenhall, D.C., Kennedy, E.M., 2011. New Zealand fossil spores and pollen: an illustrated catalogue, 4th ed, GNS Science miscellaneous series, 4. http://data.gns.cri.nz/sporepollen/index.htm (accessed on 22 October 2018).

  • Rampino, M.R., Eshet, Y., 2018. The fungal and acritarch events as time markers for the latest Permian mass extinction: An update. Geoscience Frontiers, 9/1, 147–154. https://doi.org/10.1016/j.gsf.2017.06.005

  • Rampino, M.R., Prokoph, A., Adler, A.C., Schwindt, D.M., 2002. Abruptness of the end-Permian mass extinction as determined from biostratigraphic and cyclostratigraphic analyses of. In: Koeberl, C. and MacLeod, K.G. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Papers. Geological Society of America, Boulder, Colorado, 356, pp. 415–427.

  • Raup, D.M., 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206/4415, 217–218. https://doi.org/10.1126/science.206.4415.217

  • Retallack, G.J., 1997. Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. Journal of Palaeontology, 71/3, 500–521. https://doi.org/10.1017/S0022336000039524

  • Sandler, A., Eshet, Y., Schilman, B., 2006. Evidence for a fungal event, methane-hydrate release and soil erosion at the Permian–Triassic boundary in southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 68–89. https://doi.org/10.1016/j.palaeo.2006.05.009

  • Sephton, M.A., Visscher, H., Looy, C.V., Verchovsky, A.B., Watson, J.S., 2009. Chemical constitution of a Permian-Triassic disaster species. Geology, 37/10, 875–878. https://doi.org/10.1130/G30096A.1

  • Servais, T., Vecoli, M., Li, J., Molyneux, S.G., Raevskaya, E.G., Rubinstein, C.V., 2007. The acritarch genus Veryhachium Deunff 1954: Taxonomic evaluation and first appearance. Palynology, 31/1, 191–203. https://doi.org/10.1080/01916122.2007.9989642

  • Simpson, G.L., Oksanen, J., 2018. analogue: Analogue and Weighted Averaging Methods for Palaeoecology. https://CRAN.R-project.org/package=analogue. (accessed on 16 November 2018).

  • Smith, M.R., 2017. Ternary: An R package for creating ternary plots. Zenodo. https://CRAN.R-project.org/package=Ternary. (accessed on 22 October 2018). https://doi.org/10.5281/zenodo.1068996

  • Spina, A., Cirilli, S., Utting, J., Jansonius, J., 2015. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Review of Palaeobotany and Palynology, 218, 3–14. https://doi.org/10.1016/j.revpalbo.2014.10.003

  • Steiner, M.B., Eshet, Y., Rampino, M.R., Schwindt, D.M., 2003. Fungal abundance spike and the Permian–Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 405–414. https://doi.org/10.1016/S0031-0182(03)00230-X

  • Taylor, E.L., Taylor, T.N., Krings, M., 2009. Paleobotany: The Biology and Evolution of Fossil Plants, 2nd Ed. Academic Press, Burlington, 1230 pp.

  • Torsvik, T.H., Cocks, L.R.M., 2017. Earth History and Palaeogeography. Cambridge University Press, Cambridge, UK, 317 pp.

  • Townrow, J.A., 1962. On some disaccate pollen grains of Permian to Middle Jurassic age. Grana Palynologica, 3/2, 13–44.

  • Traverse, A., 1988. Paleopalynology. Unwin Hyman Ltd., Boston, MA, USA, 600 pp.

  • Twitchett, R.J., 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 27–37. https://doi.org/10.1016/S0031-0182(99)00085-1

  • Twitchett, R.J., Wignall, P.B., 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeo-climatology, Palaeoecology, 124, 137–151. https://doi.org/10.1016/0031-0182(96)00008-9

  • Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman & Hall, London, UK, 615 pp.

  • Visscher, H., Brugman, W.A., 1986. The Permian–Triassic boundary in the Southern Alps: a palynological approach. Memorie della Società Geologica Italiana, 34, 121–128.

  • Visscher, H., Brinkhuis, H., Dilcher, D.L., Elsik, W.C., Eshet, Y., Looy, C.V., Rampino, M.R., Traverse, A., 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences, 93/5, 2155–2158. https://doi.org/10.1073/pnas.93.5.2155

  • Visscher, H., Looy, C.V., Collinson, M.E., Brinkhuis, H., van Konijnenburg-van Cittert, J.H.A., Kürschner, W.M., Sephton, M.A., 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences, 101/35, 12952–12956. https://doi.org/10.1073/pnas.0404472101

  • Visscher, H., Sephton, M.A., Looy, C.V., 2011. Fungal virulence at the time of the end-Permian biosphere crisis? Geology, 39/9, 883–886. https://doi.org/10.1130/G32178.1

  • Wignall, P.B., Twitchett, R.J., 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. In: Koeberl, C. and MacLeod, K.G. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Papers, Geological Society of America, Boulder, Colorado, 356, pp. 395–414.

OPEN ACCESS

Journal + Issues

Search