Karst hydrogeology of Lamprechtsofen (Leoganger Steinberge, Salzburg)

Open access

Abstract

The Leoganger Steinberge are a heavily karstified massif largely composed of Dachstein dolomite and limestone hosting the deepest through-trip cave in the world, Lamprechtsofen, whose frontal parts are developed as a show cave. Many parts of this 60 km-long and 1724 m-deep system are hydrologically active. 1.5 km behind the lower cave entrance Grüntopf stream and Kneippklamm stream merge to form the main cave stream. Another underground stream, Stainerhallen stream, flows through the eponymous hall of the show cave. Since 2007 water temperature, electrical conductivity and water level have been monitored in the Grüntopf and Kneippklamm stream. Water temperature and water level in the Stainerhallen and main cave stream have been measured since 2016.

The long-term dataset (2013–2017) shows that the water temperature of the cave streams (Grüntopf stream: 3.7–5.2°C; Kneippklamm stream: 5.1–5.9°C) is largely invariant, but the electrical conductivity varies strongly (Grüntopf stream: 107–210 µS/cm; Kneippklamm stream: 131–248 µS/cm) in response to snowmelt and precipitation events. The event water of the Kneippklamm stream is characterized by a low electrical conductivity and is then followed by slightly warmer and higher mineralized water derived from the phreatic zone. This dual flow pattern also explains the asymmetrical changes of the water level during snowmelt: the fast event water flows directly through vadose pathways to the measurement site, whereas the hydraulic (phreatic) response is delayed. The Grüntopf stream reacts to precipitation and snowmelt events by changes in the karst-water table, which can be explained by a piston flow-model. The Kneippklamm stream reveals evidence of a lifter system.

The altitude of the catchments was calculated using δ18O values of water samples from the underground streams and from surface precipitation. The Grüntopf stream shows the highest mean catchment (2280 m a.s.l.), which is in agreement with its daily fluctuations of the water level until August caused by long-lasting snowmelt. The Stainerhallen stream has the lowest catchment (average 1400 m a.s.l.). The catchments of the other two streams are at intermediate elevations (1770–1920 m a.s.l.). The integration of the catchment analyses and observations from tracer tests conducted in the 1970s showed that the latter reflected only one aspect of the karst water regime in this massif. During times of high recharge the water level rises, new flow paths are activated and the karst watershed shifts.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bögli A. 1978. Karsthydrographie und physische Speläologie. Springer Berlin 292 pp.

  • Covington M.D. Luhmann A.J. Wicks C.M. and Saar O.M. 2012. Process length scales and longitudinal damping in karst conduits. Journal of Geophysical Research 117 1-19. https://doi.org/10.1029/2011JF002212.

  • Drew D. P. and Goldscheider N. (eds.) 2007. Methods in Karst Hydrogeology. Taylor & Francis London 264 pp.

  • Etcheverry D. and Vennemann T. 2009. Isotope im Grundwasser: Methoden zur Anwendung in der hydro-geologischen Praxis. Umwelt-Wissen. Bundesamt für Umwelt (BAFU) 30 121 pp.

  • Ford D. and Williams P. 2007. Karst Hydrogeology and Geomorphology. Wiley Chirchester 562 pp.

  • Gattermayr W. 1976. Vergleichende Messungen und Berechnungen der Verdunstung der Evapotranspiration und der Interzeption zur Abschätzung des Wasserhaushaltes der Karsthochfläche Dachstein-Oberfeld und Erstellung der Wasserbilanz für den Inneralpinen Piburger See. Doctoral Thesis Universität Innsbruck Austria 208 pp. http://acinn.uibk.ac.at/sites/default/files/Diss_Gattermayr_W_1976.pdf

  • Harlacher C. Torsten C. and Sauter M. 2003. Chemische und thermische Reaktionen der Wässer von Karstquellen im Hochgebirge (Totes Gebirge Österreich) auf Niederschlagsereignisse. Berichte der wasserwirtschaft-lichen Planung 84 88 pp.

  • Heinisch H. Pestal G. and Reitner J. M. 2015. Erläuterungen zu Blatt 122 Kitzbühel. Geologische Bundesanstalt Wien 301 pp.

  • Höfer-Öllinger G. Gadermayr W. Zagler G. and Butschek M. 2016. Der Einfluss der Einzugsgebietshöhe auf das Abflussverhalten beim Hochwasser vom Juni 2013 aufgezeichnet in Höhlen und Karstquellen im Land Salzburg. Die Höhle 67 49–64.

  • Klappacher W. and Knapczyk H. 1977. Salzburger Höhlenbuch Band 2. Landesverein für Höhlenkunde in Salzburg Salzburg 348 pp.

  • Luetscher M. and Jeannin P.-Y. 2004. Temperature distribution in karst systems: The role of air and water fluxes. Terra Nova 16 344–350. https://doi.org/10.1111/j.1365-3121.2004.00572.x.

  • Luhmann A.J. Covington M.D. Myre J.M. Perne M. Jones S.W. Alexander Jr. E.C. and Saar M.O. 2015. Thermal damping and retardation in karst conduits. Hydrology and Earth System Sciences 19 137–157. https://doi.org/10.5194/hess-19-137-2015.

  • Pfarr T. 2016. Leoganger Steinberge. In Spötl C. Plan L. and Christian E. (eds.) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum pp. 499–508.

  • Plan L. and Spötl C. 2016. Höhlen in Österreich. In Spötl C. Plan L. and Christian E. (eds.) Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum pp. 11–22.

  • Reischer M. Bichler B. Spötl C. Höfer-Öllinger G. and Wyhlidal S. 2015. Karst hydrogeology of the Untersberg massif and its interaction with the porous aquifer in the adjacent Salzburg Basin. Austrian Journal of Earth Sciences 108 68–81. https://doi.org/10.17738/ajes.2015.0014.

  • Richter W. and Lillich W. 1975. Abriß der Hydrogeologie. Schweizerbart Stuttgart 281 pp.

  • Stingl V. 1984. Bericht 1983 über geologische Aufnahmen auf Blatt 123 Zell am See. Jahrbuch der Geologischen Bundesanstalt Wien 127 pp. 230–232.

  • Strickler A. 1924. Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme Kanäle und geschlossene Leitungen. Schweizerische Bauzeitung Bern 83/23 265–268.

  • Völkl G. 1974. Karsthydrographische Untersuchungen in den Leoganger Steinbergen. Doctoral Thesis Universität Wien Austria 149 pp.

  • Völkl G. 1977. Markierungsversuch Leoganger Steinberge 1977. Bundesanstalt für Wasserhaushalt und Karstgebieten Wien pp. 1–9.

  • Wisotzky F. 2011. Angewandte Grundwasserchemie Hydrogeologie und hydrogeochemische Modellierung. Grundlagen Anwendungen und Problemlösungen. Springer 449 pp. https://doi.org/10.1007/978-3-642-17813-9.

Search
Journal information
Impact Factor

Impact Factor 2018: 0.432
5 years Impact Factor: 0.843

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 22
PDF Downloads 125 125 21