Stable isotope geochemistry and petrography of the Qorveh–Takab travertines in northwest Iran

Open access


The Qorveh-Takab travertines, which are connected to thermal springs, are situated in the northwest of the Sanandaj- Sirjan metamorphic zone in Iran. In this study, the travertines were investigated applying petrography, mineralogy and isotope geochemistry. Oxygen and carbon isotope geochemistry, petrography, scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis were used to determine the source of the CO2 and the lithofacies and to classify the travertines. Isotope studies, morphological and mineralogical observations and distribution of travertines revealed that the travertines of the Qorveh-Takab could be of thermal water origin and, therefore, belong to the thermogene travertine category. These travertines are usually massive with mound-type morphology and are essentially found in regions with recent volcanic or high tectonic activity. The measured δ13C values of the travertines indicate that the δ13C of the CO2 released from the water during travertine deposition, while the source of the CO2 in the water springs seems to have been of crustal magmatic affinity. These travertines are divided into two lithofacies: (1) crystalline crust travertine and (2) pebbly (phytoclastic travertine with pebble- size extraclasts) travertine. δ18O and δ13C values of travertines are -0.6 to -11.9 (‰VPDB) and +6.08 to +9.84 (‰VPDB), respectively. A probable reason for the heavy carbon isotope content observed in these deposits is the presence of algae microorganisms, which was verified by SEM images. Fissure ridges, fluvial crusts with oncoids, and mound morphological features are observed in the study area. Based on the petrographic and SEM criteria, Qorveh-Takab travertines are classified into four groups: (1) compacted, (2) laminated, (3) iron-rich spring deposit and (4) aragonite-bearing travertines. Stable isotope compositions of Turkish travertines are largely similar to the travertines in the study area.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anzalone E. Ferreri V. Sprovieri M. D’Argenio B.D. 2007. Travertines as hydrologic archives: the case of the Pontecagnano deposits (southern Italy). Advances in Water Resources 30 2159-2175.

  • Atabey E. 2002. The formation of fissure-ridge type laminated travertine-tufa deposits microscopical characteristics and diagenesis Kirşehir central Anatolia. Bulletin of The Mineral Research and Exploration 123-124 59-65.

  • Boni M. Gilg H.A. Balassone G. Schneider J. Allen R.C. Moore F. 2007. Hypogene Zn carbonate ores in the Angouran deposit NW Iran. Mineralia Deposita 42 799-820.

  • Burman J. Gustafsson O. Segl M. Schmitz B. 2005. A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates. Rapid Communications in Mass Spectrometry 19 3086-3088.

  • Casanova J. 1986. Les stromatolites continentaux: paleoecologie paleohydrologie paleoclimatologie. Application au rift Gregory. Doctoral Thesis. Universite´ d’Aix Marseille. France 70 pp.

  • Chafetz H.S. and Folk R.L. 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology 54 289-316.

  • Chafetz H.S. and Lawrence J.R. 1994. Stable isotopic variability within modern travertines. Geographie physique et Quaternaries 48 257-273.

  • D’Argenio B. and FerreriV. 1992. Ambienti di deposizione e litofacies dei travertine quaternari dell’Italia centro-meridionale. Memorie della Società geologica Italiana 41861-868.

  • Gandin A. and Capezzuoli E. 2014. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems. Journal of Sedimentology 61 264-290.

  • Ghasemi A. and Talbot C.J. 2006. A new scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences 26 683-693.

  • GSI (Geological Survey of Iran) 1999. Geology maps of Ghorveh and Kabudar Press Ahang regions western Iran: a digitized final map at 1:100000 scale Teheran.

  • Guo L.I. and Riding R. 1998. Hot-Spring Travertine Facies and Sequences late Pleistocene Rapolano Terme Italy. Journal of Sedimentology 45 163-180.

  • Hoefs J. 2004. Stable Isotope Geochemistry. 5th Edition. Berlin Germany: Springer-Verlag. 244 pp.

  • Inskeep W.P. and McDermott T.R. 2005. Geothermal Biology and Geochemistry in Yellowstone National Park. Eds. Bozeman MT USA: Montana State University Publications.

  • Jones B. and Renaut R.W. 2010. Calcareous spring deposits in continental settings. In: Alonso-Zarza A.M. Tanner L.H. (Eds) Carbonates in Continental Settings. Facies Environments and Processes Elsevier Amsterdam pp. 177-224.

  • Kalender L. Oztekin-Okan O. İnceoz M. Çetindağ B. Yildirim V. 2015. Geochemistry of travertine deposits in the Eastern Anatolia District: an example of the

  • Karakoçan-Yoğunağaç (Elazığ) and Mazgirt-Dedebağ (Tunceli) travertines Turkey. Turkish Journal of Earth Sciences 24 607-626.

  • Karimi Nezhad M.T. Ghahroudi Tali M. Hashemi Mahmoudi M. Pazira E. 2010. Spatial variability of Sc and Cd concentrations in relation to land use parent material and soil properties in topsoils of Northern Ghorveh Kurdistan Province Iran. World Applied Sciences Journal 11 1105-1113.

  • Kele S. Demény A. Siklósy Z. Németh T. Tóth M. Kovács M.B. 2008. Chemical and stable isotope compositions of recent hot-water travertines and associated thermal waters from Egerszalók Hungary: depositional facies and non-equilibrium fractionations. Sedimentary Geology 211 53-72.

  • Kele S. Ozkul M. Forizs I. Gokgoz A. Baykara M.O. Alcicek M.C. Nemeth T. 2011. Stable isotope geochemical study of Pamukkale travertines: new evidences of low temperature non-equilibrium calcite-water fractionation. Sedimentary Geology 238 191-212.

  • Kele S. Vaselli O. Szabo C. Minissale A. 2003. Stable isotope geochemistry of Pleistocene travertine from Budakalász (Buda Mts Hungary). Acta Geologica Hungarica 46 161-175.

  • Keshavarzi B. Moore F. Mosaferi M. Rahmani F. 2011. The source of natural arsenic contamination in groundwater west of Iran. Water Quality Exposure and Health 3 135-147.

  • Minissale A. Kerrich D. Magro G. 2002. Structural hydrological chemical and climatic parameters affecting the precipitation of travertines in the Quaternary along the Tiber valley north of Rome. Earth and Planetary Science Letters 203 709-728.

  • Minissale A. 2004. Origin transport and discharge of CO2 in central Italy. Earth-Science Reviews 66 89-141.

  • Ozkul M. Gokgoz A. Kele S. Baykara M.O. Shen C.C. Chang Y.W. Kaya A. Hancer M. Aratman C. Akin T. Oru Z. 2014. Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology 61 291-318.

  • Ozkul M. Varol B. Alçiçek M. Alçiçek C. 2002. Depositional environments and petrography of Denizli travertines. Bulletin of the Mineral Research and Exploration Journal 125 13-29.

  • Panichi C. and Tongiorgi E. 1976. Carbon isotopic composition of CO2 from springs fumaroles mofettes and travertines of Central and Southern Italy: a preliminary prospection method of geothermal area. Proceedings of the 2nd U.N. Symposium on Development and Use of Geothermal Resources 1975: San Francisco 815-825.

  • Pasvanoglu S. and Chandrasekharam D. 2011. Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevsehir (Kozakli) area Central Turkey. Journal of Volcanology and Geothermal Research 202 241-250.

  • Pentecost A. 1995. Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. Journal of Hydrology 167 263-278.

  • Pentecost A. 2005. Travertine. Springer London 443 pp.

  • Pentecost A. and Viles H.A 1994. A review and reassessment of travertine classification. Geographie physique et Quaternaire 48 305-314.

  • Prado-Perez A.J. Hueras A.D. Crespo M.T. Martin Sanchez A. Perez Del Villar L. 2013. Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction: an approach based on the isotopic record from a travertine formation in the Guadix- Baza basin Spain. Geological Magazine 150 1- 24.

  • Rahmani Javanmard S. Tutti F. Omidian S. Ranjbaran M. 2012. Mineralogy and stable isotope geochemistry of the Ab Ask travertines in Damavand geothermal field Northeast Tehran Iran. Central European Geology 55 187-212.

  • Rainey D.K. and Jones B. 2009. Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit British Columbia Canada. Sedimentology 56 1832-1857.

  • Selim H.H. and Yanik G. 2009. Development of the Cambazli (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics Gediz Graben Turkey. Quaternary International 199 57-163.

  • Sierralta M. Kele S. Melcher F. Hambach U. Reinders J. Van Geldern R. Frechen M. 2010. Uranium series dating of travertine from Sutto: Implications for reconstruction of environmental change in Hungary. Quaternary International 222 178-193.

  • Uysal I.T. Feng Y. Zhao J. Altunel E. Weatherley D. Karabacak V. Cengiz O. Golding S.D. Lawrence M.G. Collerson K.D. 2007. U-Series dating and geochemical tracing of late Quaternary travertine in coseismic fissures. Earth and Planetary Science Letters 257 450-462.

  • Uysal T. Feng Y. Zhao J. Isik V. Nuriel P. Golding S.D. 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chemical Geology 265 442-454.

  • Valero-Garces B.L. Arenas C. Delgado-Huertas A. 2001. Depositional environments of Quaternary lacustrine travertines and stromatolites from high-altitude Andean lakes northwestern Argentina. Canadian Journal of Earth Sciences 38 1263-1283.

  • Viles H.A. and Pentecost A. 2007. Tufa and travertine. In: Nash D.J. McLaren S.J. (Eds.). Geochemical Sediments and Landscapes. Wiley-Blackwell Oxford pp. 173-199.

  • Viles H.A. and Goudie A.S. 1990. Tufas travertines and allied carbonate deposits. Progress in Physical Geography 14 19-41.

  • Wang H. Yan H. Liu Z. 2014. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine China: Implications for paleoclimatic interpretations. Geochimica et Cosmochimica Acta 125 34-48.

  • Yoshimura K. Liu Z. Cao J. Yuan D. Inokura Y. Noto M. 2004. Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines Sichuan China. Chemical Geology 205 141-153.

Journal information
Impact Factor

Impact Factor 2018: 0.432
5 years Impact Factor: 0.843

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 264 13
PDF Downloads 236 210 14