The Sarmatian/Pannonian boundary at the western margin of the Vienna Basin (City of Vienna, Austria)

Open access

Abstract

Sarmatian and Pannonian cores, drilled at the western margin of the Vienna Basin in the City of Vienna, reveal a complex succession of marine and lacustrine depositional environments during the middle to late Miocene transition. Two Sarmatian and two Pannonian transgressive-regressive sequences were studied in detail. Identical successions of benthic faunal assemblages and similar patterns in magnetic susceptibility logs characterise these sequences. This allows a correlation of the boreholes over a distance of ~3.5 km across one of the major marginal faults of the Vienna Basin. Biostratigraphic data, combined with rough estimates of sedimentation rates, reveal large gaps between these sequences, suggesting that only major transgressions reached this marginal area. In particular, during the Sarmatian-Pannonian transition, the basin margin completely emerged and turned into a terrestrial setting for at least 600 ka.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Albano P.G. Filippova N. Steger J. Kaufman D.S. Tomašových A. Stachowitsch M. and Zuschin M. 2016. Oil platforms in the Persian (Arabian) Gulf: living and death assemblages reveal no effects. Continental Shelf Research 121 21-34. https://doi.org/10.1016/j.csr.2015.12.007

  • Averyanov L.V. Phan E.L. Nguyen T.H. Nguyen S.K. Nguyen T.V. and Pham T.D. 2009. Preliminary observations of native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. Taiwania 54 191-212. https://doi.org/10.6165/tai.2009.54(3).191

  • Avnaim-Katav S. Almogi-Labin A. Sandler A. and Sivan D. 2013. Benthic foraminifera as palaeoenvironmental indicators during the last million years in the eastern Mediterranean inner shelf. Palaeogeography Palaeoclimatology Palaeoecology 386 512-530. https://doi.org/10.1016/j.palaeo.2013.06.019

  • Bandel K. Sivan N. and Heller J. 2007. Melanopsis from Al-Qarn Jordan Valley (Gastropoda: Cerithioidea). Paläontologische Zeitschrift 81 304-315.

  • Bastviken D. Cole J. Pace M. and Tranvik L. 2004. Methane emissions from lakes: dependence of lake characteristics two regional assessments and a global estimate. Global Biogeochemical Cycles 18 1-12.

  • Bilgin F. H. 1973. Studies on the functional anatomy of Melanopsis praemorsa (L.) and Zemelanopsis trifasciata (Gray). Proceedings of the Malacological Society of London 40 379-393. http://onlinelibrary.wiley.com/doi/10.1029/2004GB002238/abstract

  • Böhme M. Ilg A. and Winkelhofer M. 2008. Late Miocene “washhouse” climate in Europe. Earth and Planetary Science Letters 275 393-440. https://doi.org/10.1016/j.epsl.2008.09.011

  • Borgh M. ter Vasiliev I. Stoica M. Knežević S. Matenco L. Krijgsman W. Rundić L. and Cloetingh S. 2013. The isolation of the Pannonian basin (Central Paratethys): New constraints from magnetostratigraphy and biostratigraphy Global and Planetary Change 103 99-118. https://doi.org/10.1016/j.gloplacha.2012.10.001

  • Bosch D.T. Dance S.P. Moolenbeek R.G and Oliver P.G. 1995. Seashells of Eastern Arabia. Motivate Publishing Dubai 296 pp.

  • Brach A.R. and Song H. 2006. eFloras: New directions for online floras exemplified by the Flora of China Project. Taxon 55 188-192.

  • Britton R.H. and Crivelli A.J. 1993. Wetlands of southern Europe and North Africa: Mediterranean wetlands. In: Whigham D.F. Dykyjová D. and Hejný S. (Eds.): Handbook of Vegetation Science Wetlands of the World I: Inventory Ecology and Management. Kluwer Academic Publishers Dordrecht pp. 129-194. ISBN 978-94-015-8212-4

  • Brix F. 1988. Jungtertiär und Quartär. In: F. Brix and B. Plöchinger (eds.) Erläuterungen zu Blatt 76 Wiener Neustadt. Geologische Karte der Republik Österreich 1:50.000 Geologische Bundesanstalt Wien pp. 29-85.

  • Bruch A.A. Utescher T. Alcalde Olivares C. Dolakova N. and Mosbrugger V. 2004. Middle and Late Miocene spatial temperature patterns and gradients in Central Europe - preliminary results based on palaeobotanical climate reconstructions. Courier Forschungsinstitut Senckenberg 249 15-27.

  • Bruch A.A. Utescher T. Mosbrugger V. Gabrielyan I. and Ivanov D.A. 2006. Late Miocene climate in the circum-Alpine realm - a quantitative analysis of terrestrial palaeofloras. Palaeogeography Palaeoclimatology Palaeoecology 238 270-280. https://doi.org/10.1016/j.palaeo.2006.03.028

  • Bruyne R.H. de van Leeuwen S.J. Gmelig Meyling A.W. and Daan R. 2013. Schelpdieren van het Nederlandse Noordzeegebied. Ecologische atlas van de mariene weekdieren (Mollusca). Tirion Uitgevers Utrecht en Stichting Anemoon Lisse 414 pp. http://www.anemoon.org/flora-en-fauna/soorteninformatie/soorten/id/484/gouden-tapijtschelp

  • Catuneanu O. Galloway W.E. Kendall C.G.St.C. Miall A.D. Posamentier H.W. Strasser A. and Tucker M.E. 2011. Sequence Stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy 44 173-245. https://doi.org/10.1127/0078-0421/2011/0011

  • Cernajsek T. 1974. Die Ostracodenfaunen der Sarmatischen Schichten in Österreich. In: A. Papp F. Marinescu and J. Seneš (eds.) Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys. Verlag der Slowakischen Akademie der Wissenschaften Bratislava 4 (M5) pp. 458-491.

  • Cicha I. Rögl F. Rupp C. and Ctyroky J. 1998. Oligocene- Miocene foraminifera of the Central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 549 1-325.

  • Čtyroký P. 2000. Nové litostratigafické jednotky pannonu vídeňské pánve na Moravě. Věstník Českého geologického ústavu 75 159-170.

  • Cziczer I. Magyar I. Pipík R. Böhme M. Ćorić S. Bakrač K. Sütő-Szentai M. Lantos M. Babinszki E. and Müller P. 2009. Life in the sublittoral zone of long-lived Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation Hungary. International Journal of Earth Science 98 1741-1766. https://doi.org/10.1007/s00531-008-0322-3

  • Deutzmann J.S. and Schink B. 2011. Anaerobic oxidation of methane in sediments of Lake Constance an oligotrophic freshwater lake. Applied Environmental Microbiology 77 4429-4436. https://doi.org10.1128/AEM.00340-11

  • Egger M. Rasigraf O. Sapart C.J. Jilbert T. Jetten M.S.M. Röckmann T. van der Veen C. Bândă N. Kartal B. Ettwig K.F. Slomp C.P. 2015. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environmental Science and Technology 49 277-283. http://pubs.acs.org/doi/abs/10.1021/es503663z

  • Elečko M. and Vass D. 2001. Litostratigrafické jednotky usadenín sarmatského veku vo viedenskej panve. Mineralia Slovaca 33 1-6.

  • Faegri K. and Iversen J. 1989. Textbook of Pollen Analysis 4th Edition. Wiley Chichester 328 pp.

  • Filipescu S. and Popa M. 2001. Biostratigraphic and palaeoecologic significance of the macro- and microfossils assemblages in the Borod Formation (Eastern Borod Depression North-West Romania). Acta Palaeontologica Romaniae 3 135-148.

  • Filipescu S. Wanek F. Miclea A. De Leeuw A. and Vasiliev I. 2011. Micropaleontological response to the changing paleoenvironment across the Sarmatian-Pannonian boundary in the Transylvanian Basin (Miocene Oarba de Mure section Romania). Geologica Carpathica 62 91-102. https://doi.org/10.2478/v10096-011-0008-9

  • Fuchs W. 1985. Österreichische Geologische Karte 59 Wien 1:50.000. Geologische Bundesanstalt Wien.

  • Geary D.H. Hunt G. Magyar I. and Schreiber H. 2010. The paradox of gradualism: phyletic evolution in two lineages of lymnocardiid bivalves (Lake Pannon central Europe). Paleobiology 36 592-614. https://doi.org/10.1666/08065.1

  • Geary D.H. Rich J.A. Valley J.W. and Baker K. 1989. Stable isotopic evidence of salinity change: influence on the evolution of melanopsid gastropods in the Late Miocene Pannonian basin. Geology 17 981-985. https://doi.org/10.1130/0091-7613(1989)017<0981:SIEOSC>2.3.CO;2

  • Gofas S. Moreno D. and Salas C. 2011. Moluscos marinos de Andalucía. Universidad de Málaga Málaga. 2 volumes 798 pp.

  • Gross M. 2004. Zur Ostracodenfauna (Crustacea) Paläoökologie und Stratigrafie der Tongrube Mataschen (Unter-Pannonium Steirisches Becken Österreich). Joannea Geologie und Paläontologie 5 49-129.

  • Gross M. 2006. Mittelmiozäne Ostracoden aus dem Wiener Becken (Badenium/Sarmatium Österreich). Österreichische Akademie der Wissenschaften Schriftenreihe der Erdwissenschaftlichen Kommissionen Sonderband 1 1-224. ISBN 978-3-7001-3650-7

  • Gross M. Piller W.E. Scholger R. and Gitter F. 2011. Biotic and abiotic response to palaeoenvironmental changes at Lake Pannons’ western margin (Central Europe Late Miocene). Palaeogeography Palaeoclimatology Palaeoecology 312 181-193. https://doi.org/10.1016/j.palaeo.2011.10.010

  • Hammer O. and Harper D.A.T. 2006. Paleontological Data Analysis. Blackwell Publishing Oxford 351 pp.

  • Hammer O. Harper D.A.T. and Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 1-9.

  • Harzhauser M. 2009. The early Vallesian vertebrates of Atzelsdorf (Late Miocene Austria). 2. Geology. Annalen des Naturhistorischen Museums in Wien 111A 479-488.

  • Harzhauser M. and Piller W.E. 2004. The Early Sarmatian - hidden seesaw changes. Courier des Forschungsinstitutes Senckenberg 246 89-112.

  • Harzhauser M. Piller W.E. 2007. Benchmark data of a changing sea. - Palaeogeography Palaeobiogeography and Events in the Central Paratethys during the Miocene. Palaeogeography Palaeoclimatology Palaeoecology 253 8-31. https://doi.org/10.1016/j.palaeo.2007.03.031

  • Harzhauser M. and Piller W.E. 2010. Molluscs as a major part of subtropical shallow-water carbonate production - an example from a Middle Miocene oolite shoal (Upper Serravallian Austria). International Association of Sedimentologists Special Publications 42 185-200. https://doi.org/10.1002/9781118398364.ch11

  • Harzhauser M. Daxner-Höck G. and Piller W.E. 2004. An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Austrian Journal of Earth Science 95/96 6-19.

  • Harzhauser M. Kowalke T. and Mandic O. 2002. Late Miocene (Pannonian) gastropods of Lake Pannon with special emphasis on early ontogenetic development. Annalen des Naturhistorischen Museums Wien 103A 75-141.

  • Harzhauser M. Latal C. and Piller W.E. 2007. The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change. Palaeogeography Palaeoclimatology Palaeoecology 249 335-350. https://doi.org/10.1016/j.palaeo.2007.02.006

  • Harzhauser M. Kern A. Soliman A. Minati K. Piller W.E. Danielopol D.L. and Zuschin M. 2008. Centennial- to decadal scale environmental shifts in and around Lake Pannon (Vienna Basin) related to a major Lake Miocene lake level rise. Palaeogeography Palaeoclimatology Palaeoecology 270 102-115. https://doi.org/10.1016/j.palaeo.2008.09.003

  • Hölzel M. Wagreich M. Faber R. and Strauss P. 2008. Regional subsidence analysis of the Vienna Basin (Austria). Austrian Journal of Earth Sciences 101 88-98.

  • Hopkins J.S. 1950. Differential flotation and deposition of coniferous and deciduous tree pollen. Ecology 31 633-641. https://doi.org/10.2307/1931580

  • Hyžný M. Šimo V. and Starek D. 2015. Ghost shrimps (Decapoda: Axiidea: Callianassidae) as producers of an Upper Miocene trace fossil association from sublittoral deposits of Lake Pannon (Vienna Basin Slovakia). Palaeogeography Palaeoclimatology Palaeoecology 425 50-66. https://doi.org/10.1016/j.palaeo.2015.02.012

  • Jekelius E. 1944. Sarmat und Pont von Soceni (Banat). Memoriile Institutului Geolologic al României 5 1-167.

  • Jiménez-Moreno G. Fauquette S. and Suc J.-P. 2008. Vegetation climate and paleoaltitude reconstructions of eastern alpine mountain ranges during the Miocene based on pollen records from Austria Central Europe. Journal of Biogeography 35 1638-1649. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2008.01911.x/epdf

  • Jiříček R. 1974. Biostratigraphische Bedeutung der Ostracoden des Sarmats s. str. In: A. Papp F. Marinescu and J. Seneš (eds.) Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys. Verlag der Slowakischen Akademie der Wissenschaften Bratislava 4 (M5) pp. 434-457.

  • Jiříček R. 1985. Die Ostracoden des Pannonien. In: A. Papp A. Jámbor and F.F. Steininger (eds.) Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys. Ungarische Akademie der Wissenschaften Budapest 7 (M6) pp. 378-425.

  • Jiříček R. and Riha J. 1991. Correlation of Ostracod Zones in the Paratethys and Tethys. Saito Ho-on Kai Special Publications (Proceedings of Shallow Tethys) 3 435-457.

  • Karrer F. 1877. Geologie der Kaiser Franz Josefs Hochquellen- Wasserleitung: Eine Studie in den Tertiär- Bildungen am Westrande des Alpinen Theiles der Niederung von Wien. Abhandlungen der k.k. Geologischen Reichsanstalt 9 1-410.

  • Kern A.K. Harzhauser M. Piller W.E. Mandic O. and Soliman A. 2012a. Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies. Palaeogeography Palaeoclimatology Palaeoecology 329-330 124-136. https://doi.org/10.1016/j.palaeo.2012.02.023

  • Kern A.K. Harzhauser M. Soliman A. Piller W.E. and Gross M. 2012b. Precipitation driven decadal scale decline and recovery of wetlands of Lake Pannon during the Tortonian. Palaeogeography Palaeoclimatology Palaeoecology 317-318 1-12. https://doi.org/10.1016/j.palaeo.2011.11.021

  • Kern A.K. Harzhauser M. Soliman A. Piller W.E. Mandic O. 2013. High resolution analysis of Upper Miocene lake deposits: Evidence for the influence of Gleissberg-band-solar forcing. Palaeogeography Palaeoclimatology Palaeoecology 370 167-183. http://dx.doi.org/10.1016/j.palaeo.2012.12.005

  • Klaus W. 1984. Zur Mikroflora des Unter-Sarmat am Alpen-Südostrand. Beiträge zur Paläontologie von Österreich 11 289-419.

  • Kollmann K. 1960. Cytherideinae und Schulerideinae n. subfam. (Ostracoda) aus dem Neogen des östl. Oesterreich. Mitteilungen der Geologischen Gesellschaft in Wien 51 89-195.

  • Kováč M. Baráth I. Kováčova-Slamková M. Pipík R. Hlavatý I. Hudáčková N. 1998. Late Miocene paleoenvironments and sequence stratigraphy: northern Vienna Basin. Geologica Carpathica 49 445-458.

  • Krenmayr H.G. and Schnabel W. 2002. Intramontane Becken (T6-T7). In: Schnabel W. (Ed.): Geologische Karte von Niederösterreich 1: 200.000. Legende und kurze Erläuterung Geologische Bundesanstalt Wien pp. 30-33.

  • Kröll A. and Wessely G. 1993. Wiener Becken und angrenzende Gebiete - Strukturkarte-Basis der tertiären Beckenfüllung. Geologische Themenkarte der Republik Österreich 1:200.000 Geologische Bundesanstalt Wien.

  • Krstić N. 1985. Ostracoden im Pannonien der Umgebung von Belgrad. In: A. Papp A. Jámbor and F.F. Steininger (eds.) Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys. Ungarische Akademie der Wissenschaften Budapest 7 (M6) pp. 103-143.

  • Langer M.R. 1993. Epiphytic foraminifera. Marine Micropaleontology 20 235-265. https://doi.org/10.1016/0377-8398(93)90035-V

  • Latal C. Piller W.E. and Harzhauser M. 2006. Shifts in oxygen and carbon isotope signals in marine molluscs from the Central Paratethys (Europe) around the Lower/ Middle Miocene transition. Palaeogeography Palaeoclimatology Palaeoecology 231 347-360. https://doi.org/10.1016/j.palaeo.2005.08.008

  • Lee E.Y. and Wagreich M. 2016. Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts. International Journal of Earth Sciences 106 687-705. https://doi.org/10.1007/s00531-016-1329-9

  • Lin Z. Sun X. Lu Y. and Lu H. 2014. Heavy sulfur isotopic composition of authigenic pyrite in the sediments of Shenhu area South China Sea. Acta Geologica Sinica 88 Supplementum 2 1569-1570. https://doi.org/10.1111/1755-6724.12384_9

  • Lin Z. Sun X. Peckmann J. Lu Y. Xu L. Strauss H. Zhou H. Gong J. Lu H. and Teichert B.M.A. 2016. How sulfate- driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea. Chemical Geology 440 26-41. https://doi.org/10.1016/j.chemgeo.2016.07.007

  • Lirer F. Harzhauser M. Pelosi N. Piller W.E. Schmid H.P. and Sprovieri M. 2009. Astronomically forced teleconnection between Paratethyan and Mediterranean sediments during the Middle and Late Miocene Palaeogeography Palaeoclimatology Palaeoecology 275 1-13. https://doi.org/10.1016/j.palaeo.2009.01.006

  • Lodge T.E. 2016. The Everglades Handbook - Understanding the Ecosystem. Taylor and Francis Group Boca Raton 4th Edition 432 pp.

  • Lozouet P. Lesport J.F. and Renard P. 2001. Révision des Gastropoda (Mollusca) du Stratotype de l’Aquitanien (Miocene inf.): site de Saucats “Lariey” Gironde France. Cossmanniana Hors série 3 1-189.

  • Lu H.F. Chen F. Liao Z.L. Sun X.M. Liu J. Cheng S.H. and Fu S.Y. 2007. Authigenic pyrite rods from the core HD196A in the northeastern South China Sea. Acta Geologica Sinica 81 519-525 (in Chinese).

  • Lukeneder S. Zuschin M. Harzhauser M. and Mandic O. 2011. Spatiotemporal signals and palaeoenvironments of endemic molluscan assemblages in the marine system of the Sarmatian Paratethys. Acta Palaeontologica Polonica 56/4 767-784. https://doi.org/10.4202/app.2010.0046

  • Magyar I. Geary D.H. and Müller P. 1999. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography Palaeoclimatology Palaeoecology 147 151-167. https://doi.org/10.1016/S0031-0182(98)00155-2

  • Magyar I. Müller P.M. Sztanó O. Babinszki E. and Lantos M. 2006. Oxygen-related facies in Lake Pannon deposits (Upper Miocene) at Budapest-Köbánya. Facies 52 209-220. https://doi.org/10.1007/s10347-005-0036-y

  • Magyar I. Cziczer I. Stanó O. Dávid Á. and Johnson M. 2016. Palaeobiology palaeoecology and stratigraphic significance of the Late Miocene cockle Lymnocardium soproniense from Lake Pannon. Geologica Carpathica 67 561-571. https://doi.org/10.1515/geoca-2016-0035

  • Maslo M. 2015. Geologisch-paläontologische Untersuchung U2-Verlängerung/U5-Neubau. Unpublished report MA 29 Vienna 58 pp.

  • Mátyás J. Burns S.J. Müller P. and Magyar I. 1996. What can stable isotopes say about salinity? An example from the Late Miocene Pannonian Lake. Palaios 11 31-39. https://doi.org/10.2307/3515114

  • McGlynn S.E. Chadwick G.L. Kempes C.P. and Orphan V.J. 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526 531-535. https://doi.org/10.1038/nature15512

  • Mosbrugger V. and Utescher T. 1997. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Paleogeography Palaeoclimatology Palaeoecology 134 61-86. https://doi.org/10.1016/S0031-0182(96)00154-X

  • Murray J.W. 2006. Ecology and applications of benthic foraminifera. Cambridge University Press Cambridge 426 pp.

  • Neubauer T.A. Harzhauser M. and Mandic O. 2013a. Phenotypic evolution in a venerid bivalve species lineage from the late Middle Miocene Central Paratethys Sea: a multi-approach morphometric analysis. Biological Journal of the Linnean Society 110 320-334. https://doi.org/10.1111/bij.12120

  • Neubauer T.A. Harzhauser M. and Kroh A. 2013b. Phenotypic evolution in a fossil gastropod species lineage: evidence for adaptive radiation? Palaeogeography Palaeoclimatology Palaeoecology 370 117-126.

  • Neubauer T.A. Harzhauser M. Mandic O Kroh A. and Georgopoulou E. 2016. Evolution turnovers and spatial variation of the gastropod fauna of the late Miocene biodiversity hotspot Lake Pannon. Palaeogeography Palaeoclimatology Palaeoecology 442 84-95. https://doi.org/10.1016/j.palaeo.2012.11.025

  • Oliver P.G. Holmes A.M. Killeen I. J. and Turner J.A. 2016. Marine bivalve shells of the British Isles. Amgueddfa Cymru - National Museum Wales. http://naturalhistory.museumwales.ac.uk/britishbivalves. [Accessed: 13 October 2017].

  • Olteanu R. 1989. New ostracods in upper Neogene from Romania. Institut de Géologie et de Géophysique Bucarest Mémoires 34 123-182.

  • Papp A. 1951. Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien 39-41 (1946-1948) 99-193.

  • Papp A. 1953. Die Molluskenfauna des Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien 44 85-222.

  • Papp A. 1954. Die Molluskenfauna im Sarmat des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien 45 1-112.

  • Papp A. 1956. Fazies und Gliederung des Sarmats im Wiener Becken. Mitteilungen der Geologischen Gesellschaft in Wien 47 (1954) 1-97.

  • Papp A. Marinescu F. and Senes J. 1974 (eds) M5. Sarmatien. Chronostratigraphie und Neostratotypen 4 1-707 VEDA Bratislava.

  • Paulissen W.E. Luthi S.M. Grunert P. Ćorić S. and Harzhauser M. 2011. Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna Basin. Geologica Carpathica 62 155-169. https://doi.org/10.2478/v10096-011-0013-z

  • Planderova E. 1990. Miocene microflora of Slovak Central Paratethys and its biostratigraphic significance. Dionyz Stur Institute of Geology Bratislava 144 pp.

  • Rao V.P. Kessarkar P.M. Patil S.K. and Ahmad S.M. 2008. Rock magnetic and geochemical record in a sediment core from the eastern Arabian Sea: diagenetic and environmental implications during the late Quaternary. Palaeogeography Palaeoclimatology Palaeoecology 270 46-52. https://doi.org/10.1016/j.palaeo.2008.08.011

  • de Rigo D. Caudullo G. Houston Durrant T. and San- Miguel-Ayanz J. 2016. The European Atlas of Forest Tree Species: modelling data and information on forest tree species. In: San-Miguel-Ayanz J. de Rigo D. Caudullo G. Houston Durrant T. Mauri A. (Eds.): European Atlas of Forest Tree Species. Publ. Off. EU Luxembourg pp. e01aa69+. https://w3id.org/mtv/FISE-Comm/v01/e01aa69

  • Rögl F. 1998. Foraminiferenfauna aus dem Karpat (Unter- Miozän) des Korneuburger Beckens. Beiträge zur Paläontologie 23 123-173.

  • Sassen R. Roberts H.H. Carney R. Milkov A.V. DeFreitas D.A. Lanoil B. and Zhang C. 2004. Free hydrocarbon gas gas hydrate and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chemical Geology 205 195-217. https://doi.org/10.1016/j.chemgeo.2003.12.032

  • Schaffer F.X. 1906. Geologie von Wien. II. Theil. R. Lechner Wien 242 pp.

  • Schnabel W. Krenmayr H.-G. Mandl G.W. Nowotny A. Roetzel R. and Scharbert S. 2002. Legende und kurze Erläuterungen zur geologischen Karte von Niederösterreich 1:200.000. Geologische Bundesanstalt Wien 47 pp.

  • Schultz O. 2003. Bivalvia neogenica (Lucinoidea- Mactroidea). In: Piller W.E. (ed.) Catalogus Fossilium Austriae. Verlag ÖAW Wien pp. 381-690.

  • Schwarzhans W. Carnevale G. Bratishko A. Japundžić S. and Bradić K. 2017a. Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part II: Gadidae and Lotidae. Swiss Journal of Palaeontology 136 19-43. https://doi.org/10.1007/s13358-016-0114-5

  • Schwarzhans W. Ahnelt H. Carnevale G. Japundžić S. Bradić K. and Bratishko A. 2017b. Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part III: Tales from the cradle of the Ponto- Caspian gobies. Swiss Journal of Palaeontology 136 45-92. https://doi.org/10.1007/s13358-016-0120-7

  • Smirnov A. Chmura G.L. and Lapointe M.F. 1996. Spatial distribution of suspended pollen in the Mississippi River as an example of pollen transport in alluvial channels. Review of Palaeobotany and Palynology 92 69-81. https://doi.org/10.1016/0034-6667(95)00098-4

  • Stuchlik L. Ziembińska-Tworzydło M. Kohlman- Adamska A. Grabowska I. Ważyńska H. Słodkowska B. and Sadowska A. 2001. Atlas of pollen and spores from the Polish Neogene Vol. 1 spores. Polish Academy of Sciences W Szafer Institute of Botany Kraków 158 pp.

  • Stuchlik L. Ziembińska-Tworzydło M. Kohlman- Adamska A. Grabowska I. Ważyńska H. and Sadowska A. 2002. Atlas of pollen and spores from the Polish Neogene Vol. 2 gymnosperms. Polish Academy of Sciences W Szafer Institute of Botany Kraków 237 pp.

  • Stuchlik L. Ziembińska-Tworzydło M. Kohlman- Adamska A. Grabowska I. Ważyńska H. and Sadowska A. 2009. Atlas of pollen and spores from the Polish Neogene Vol. 3 Angiosperm (1). Polish Academy of Sciences W Szafer Institute of Botany Kraków 233 pp.

  • Stuchlik L. Ziembińska-Tworzydło M. Kohlman- Adamska A. Grabowska I. Ważyńska H. and Sadowska A. Durska E. 2014. Atlas of pollen and spores from the Polish Neogene Vol. 4 Angiosperm (2). Polish Academy of Sciences W Szafer Institute of Botany Kraków 466 pp.

  • Suess E. 1866. Untersuchungen über den Charakter der österreichischen Tertiärablagerungen II. Über die Bedeutung der sogenannten brackischen Stufe oder der Cerithienschichten. Sitzungsberichte der k. Akademie der Wissenschaften 54 1-40.

  • Sztanó O. Krézsek C. Magyar I. Wanek F. and Juhász G. 2005. Sedimentary cycles and rhythms in a Sarmatian to Pannonian (Late Miocene) transitional section at Oarba de Mures/Marosorbó Transylvanian Basin. Acta Geologica Hungarica 48 235-257. https://doi.org/10.1556/AGeol.48.2005.3.1

  • Starek D. and Pipík R. 2007. Oxic and ?anoxic deposits of the Pannonian E (Late Miocene) from the Vienna Basin (sedimentological and micropaleontological description of sediments with Congeria subglobosa horizon. Scripta Facultatis scientiarum naturalium Universitatis Masarykiane Brunensis 36 25-30.

  • Tauber A.F. 1939a. Ein Aufschluß an der Grenze zwischen Sarmat und Pannon im XVII. Wiener Gemeindebezirk. Verhandlungen der Zweigstelle Wien der Reichsstelle für Bodenforschung 1939 205-209.

  • Tauber A.F. 1939b. Studien im Sarmat und Pannon des Küniglberg - Gloriettenbergzuges in Wien. Verhandlungen der Zweigstelle Wien der Reichsstelle für Bodenforschung 1939 161-183.

  • Thompson R.S. Anderson K.H. and Bartlein P.J. 1999a. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America - Introduction and conifers: U.S. Geological Survey Professional Paper 1650A 269 pp.

  • Thompson R.S. Anderson K.H. and Bartlein P.J. 1999b. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America - Hardwoods: U.S. Geological Survey Professional Paper 1650B 423 pp.

  • Tóth E. 2008. Sarmatian (Middle Miocene) ostracod fauna from the Zsámbek Basin Hungary. Geologica Pannonica 36 101-151.

  • Traverse A. and Ginsburg R.N. 1966. Palynology of the surface sedimentation of Great Bahamas Bank as related to water movements and sedimentation. Marine Geology 4 417-459. https://doi.org/10.1016/0025-3227(66)90010-7

  • Utescher T. Bruch A.A. Erdei B. François L. Ivanov D. Jacques F.M.B. Kern A.K. Liu Y.-S. Mosbrugger V. and Spicer R.A. 2014. The Coexistence Approach-Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography Palaeoclimatology Palaeoecology 410 58-73. https://doi.org/10.1016/j.palaeo.2014.05.031

  • Vasiliev I. de Leeuw A. Filipescu S. Krijgsman W. Kuiper K. Stoica M. and Briceag A. 2010. The age of the Sarmatian-Pannonian transition in the Transylvanian Basin (Central Paratethys). Palaeogeography Palaeoclimatology Palaeoecology 297 54-69. https://doi.org/10.1016/j.palaeo.2010.07.015

  • Walton W.R. and Sloan B.J. 1990. The genus Ammonia Brunnich 1772. Its geographic distribution and morphologic variability. Journal of Foraminiferal Research 20 128-156. https://doi.org/10.2113/gsjfr.20.2.128

  • Wegener G. Krukenberg V. Riedel D. Tegetmeyer H.E. and Boetius A. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526 587-590. https://doi.org/10.1038/nature15733

  • Welter-Schultes F. 2012. European non-marine molluscs a guide for species identification. Planet Poster Editions Göttingen 674 pp.

  • Wessely G. 2006. Niederösterreich. Geologie der Österreichischen Bundesländer. Geologische Bundesanstalt Wien 416 pp.

  • Wilen B.O. and Tiner R.W. 1993. Wetlands of the United States. In: Whigham D.F. Dykyjová D. Hejný S. (Eds.): Handbook of Vegetation Science Wetlands of the World I: Inventory Ecology and Management. Kluwer Academic Publishers Dordrecht Bosten London pp. 129-194.

  • Willard D.A. Weimer L.M. and Riegel W.L. 2001. Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Review of Palaeobotany and Palynology 113 213-235. https://doi.org/10.1016/S0034-6667(00)00042-7

  • Wilson B. 1998. Superfamily Cardioidea. In: Beesley P.L. Ross G.J.B. and Wells A. (eds.) Mollusca. The Southern Synthesis: Fauna of Australia Part A 5 328-332.

  • Wu Z. Zhou H. Peng X. Jia N. Wang Y. and Yuan L. 2009. Anaerobic oxidation of methane in coastal sediment from Guishan Island (Pearl River Estuary) South China Sea. Journal of Earth System Science 117 935-943. https://doi.org/10.1007/s12040-008-0078-y

  • Xie L. Wang J.S. Wu N.Y. Wu D.D. Wang Z. Zhu X.W. Hu J. Chen H.R. and Lin Q. 2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China Earth Science 56 1-7. https://doi.org/10.1007/s11430-012-4511-3

  • Zelenka J. 1990. A review of the Sarmatian Ostracoda of the Vienna Basin. In: R. Whatley and C. Maybury (eds.) Ostracoda and Global Events. Chapman & Hall London pp. 263-270.

  • Zelenka J. 1992. A review of the Pannonian Ostracoda of the Vienna Basin. Knihovnicka Zemniho plynu a nafty 15 205-213.

  • Zhang. M. Konishi H. Xu H. Sun X. Lu H. Wu D. and Wu N. 2014. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. Journal of Asian Earth Sciences 92 293-301. https://doi.org/10.1016/j.jseaes.2014.05.004

  • Zuschin M. and Oliver P.G. 2003. Bivalves and bivalve habitats in the northern Red Sea. Verlag des Naturhistorischen Museums Wien 304 pp. ISBN: 3902421002.

Search
Journal information
Impact Factor

Impact Factor 2018: 0.432
5 years Impact Factor: 0.843

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 466 395 12
PDF Downloads 337 269 10