Late Glacial and Holocene sedimentary infill of Lake Mondsee (Eastern Alps, Austria) and historical rockfall activity revealed by reflection seismics and sediment core analysis

Abstract

Glacigenic perialpine lakes can constitute continuous post-last glacial maximum (LGM) geological archives which allow reconstruction of both lake-specific sedimentological processes and the paleoenvironmental setting of lakes. Lake Mondsee is one among several perialpine lakes in the Salzkammergut, Upper Austria, and has been previously studied in terms of paleoclimate, paleolimnology and (paleo)ecology. However, the full extent and environment of Late Glacial to Holocene sediment deposition had remained unknown, and it was not clear whether previously studied core sections were fully representative of 3D sediment accumulation patterns. In this study, the sedimentary infill of Lake Mondsee was examined via high-resolution seismic reflection survey over a 57-km extent (3.5 kHz pinger source) and a sediment core extracted from the deepest part of the lake, with a continuous length of 13.76 m. In the northern basin, seismic penetration is strongly limited in most areas because of abundant shallow gas (causing acoustic blanking). In the deeper areas, the acoustic signal reaches depths of up to 80 ms TWT (two-way travel time), representing a postglacial sedimentary sequence of at least 60-m thickness. Holocene deposits constitute only the uppermost 11.5 m of the sedimentary succession. Postglacial seismic stratigraphy of Lake Mondsee closely resembles those of well-studied French and Swiss perialpine lakes, with our data showing that most of Lake Mondsee’s sedimentary basin infill was deposited within a short time period (between 19,000 BP and 14,500 BP) after the Traun Glacier retreated from the Mondsee area, indicating an average sedimentation rate of about 1.4 cm/yr. Compared to other perialpine lakes, the seismic data from Lake Mondsee reveal little indication of mass movement activities during the Holocene. One exception, however, is rockfalls that originate from a steep cliff, the Kienbergwand, situated on the southern shore of Lake Mondsee, where, in the adjacent part of the lake, seismic profiles show mass transport deposits (MTDs), which extend approximately 450 m from the shore and are mappable over an area of about 45,300 m2. Sediment cores targeting the MTDs show two separate rockfall events. The older event consists of clast-supported angular dolomitic gravels and sands, showing high amounts of fine fraction. The younger event exhibits dolomitic clasts of up to 1.5 cm in diameter, which is mixed within a lacustrine muddy matrix. Radiocarbon dating and correlations with varve-dated sediment cores hint at respective ages of AD 1484 ± 7 for Event 1 and AD 1639 ± 5 for Event 2. As our data show no evidence of larger-scale mass movements affecting Lake Mondsee and its surroundings, we infer that the current-day morphology of the Kienbergwand is the result of infrequent medium-scale rockfalls.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andersen, N., Lauterbach, S., Erlenkeuser, H., Danielopol, D. L., Namiotko, T., Huls, M., Belmecheri, S., Dulski, P. Nantke, C., Meyer, H., Chapligin, B., von Grafenstein, U. and Brauer, A., 2017. Evidence for higher-than-average air temperatures after the 8.2 ka event provided by a Central European δ18O record. Quaternary Science Reviews, 172, 96-108. https://doi.org/10.1016/j.quascirev.2017.08.001

  • Baster, I., Girardclos, S., Pugin, A. and Wildi, W., 2003. High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland). Eclogae Geologicae Helveticae, 96 (Supplement 1), 11-20. https://doi.org/0012-9402/03/01S011-10.

  • Behbehani, A.-R., 1987. Sedimentations- und Klimageschichte des Spat- und Postglazials im Bereich der Nordlichen Kalkalpen (Salzkammergutseen, Osterreich). Gottinger Arbeiten zur Geologie und Palaontologie, 34, 1-120.

  • Behbehani, A. R., Handl, M., Horsthemke, E., Schmidt, R., and Schneider, J., 1985. Possible lake level fluctuations within the Mondsee and Attersee. In D. L. Danielopol, R. Schmidt, & E. Schultze (Eds.), Contributions to the paleolimnology of the Trumer Lakes (Salzburg) and the lakes Mondsee, Attersee and Traunsee (Upper Austria) (pp. 136-148). Limnologisches Institut der Osterreichischen Akademie der Wissenschaften, Mondsee.

  • Blum, P., 1997. Physical properties handbook, ODP Tech Note 26. doi:

    • Crossref
    • Export Citation
  • Breitwieser, R., 2010. Der „Mondsee-Tsunami“ - Fakt oder Mediengag? NAU - Nachrichtenblatt Arbeitskreis Unterwasserarchaologie, 16, 85-91.

  • Burgschwaiger, E. and Schmid, C., 2001. Seismostratigraphische Untersuchungen der Talfullung des oberen Trauntales bei Ebensee. In: C. Hammerl, W. Lenhardt, R. Steinacker, & P. Steinhauser (eds.), 150 Jahre Meteorologie und Geophysik in Osterreich. Wien: Zentralanstalt fur Meteorologie und Geodynamik, pp. 792-797.

  • Bussmann, F., and Anselmetti, F. S., 2010. Rossberg landslide history and flood chronology as recorded in Lake Lauerz sediments (Central Switzerland). Swiss Journal of Geosciences, 103/1, 43-59. https://doi.org/10.1007/s00015-010-0001-9

  • Charlet, F., De Batist, M., Chapron, E., Bertrand, S., Pino, M. and Urrutia, R., 2008. Seismic stratigraphy of Lago Puyehue (Chilean Lake District): New views on its deglacial and Holocene evolution. Journal of Paleolimnology, 39/2, 163-177. https://doi.org/10.1007/s10933-007-9112-3

  • Cohen, A. S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford, UK: Oxford University Press.

  • Cukur, D., Krastel, S., Tomonaga, Y., Cağatay, M. N. and Meydan, A. F., 2013. Seismic evidence of shallow gas from Lake Van, Eastern Turkey. Marine and Petroleum Geology, 48, 341-353. https://doi.org/10.1016/j.marpetgeo.2013.08.017

  • Dapples, A., Oswald, F., Raetzo, D., Dapples, F., Oswald, D., Raetzo, H. and Zwahlen, P., 2003. New records of Holocene landslide activity in the Western and Eastern Swiss Alps: implication of climate and vegetation changes. Eclogae Geologicae Helvetiae, 96/1, 1-9. https://doi.org/10.1007/S00015-003-1078-1

  • Dorren, L. K. A., 2003. A review of rockfall mechanics and modelling approaches. Progress in Physical Geography, 27/1, 69-87. https://doi.org/10.1191/0309133303pp359ra

  • Egger, H. and van Husen, D., 2009. Geologische Karte der Republik Osterreich - Erlauterungen zu Blatt 64 Strasswalchen. Wien.

  • Finckh, P., Kelts, K., and Lambert, A., 1984. Seismic stratigraphy and bedrock forms in perialpine lakes. Geological Society of America Bulletin, 95/9, 1118-1128. https://doi.org/https://doi.org/10.1130/0016-7606(1984)95<1118:SSABFI>2.0.CO;2

  • Fiore, J., Girardclos, S., Pugin, A., Gorin, G. and Wildi, W., 2011. Wurmian deglaciation of western Lake Geneva (Switzerland) based on seismic stratigraphy. Quaternary Science Reviews, 30/3-4, 377-393. https://doi.org/10.1016/J.QUASCIREV.2010.11.018

  • Geoland.at, (n.d.) Digitales Gelandemodell (DGM) Osterreich. Retrieved from https://www.data.gv.at/katalog/dataset/d88a1246-9684-480b-a480-ff63286b35b7

  • Geologische Bundesanstalt, 2017. Massenbewegungen. Retrieved October 5, 2017, from https://gisgba.geologie.ac.at/gbaviewer/?url=https://gisgba.geologie.ac.at/ArcGIS/rest/services/AT_GBA_MASSENBEWEGUNGEN/MapServer

  • Gumpinger, C., 2011. Potentialstudie Salzkammergut. Okologischer Zustand und Verbesserungsmoglichkeiten an den Zuflussen von Mondsee und Irrsee. Linz. Amt der Oo. Landesregierung, Linz, 176 pp.

  • Gruner, U., 2006. Bergsturze und Klima in den Alpen: gibt es Zusammenhange? Bulletin fur Angewandte Geologie, 11/2, 25-34. https://doi.org/http://doi.org/10.5169/seals-226166

  • Hammerl, C., 2017. Historical earthquake research in Austria. Geoscience Letters, 4/1, 7. https://doi.org/10.1186/s40562-017-0073-8

  • Heirman, K., De Batist, M., Charlet, F., Moernaut, J., Chapron, E., Brummer, R., Pino, M. and Urrutia, R. (2011). Detailed seismic stratigraphy of Lago Puyehue: Implications for the mode and timing of glacier retreat in the Chilean Lake District. Journal of Quaternary Science, 26/7, 665-674. https://doi.org/10.1002/jqs.1491

  • Herrmann, M., 1990. Oberflachenkartierung der Mooswinkelbucht/Mondsee und Untersuchungen zur Tiefenstruktur (Osterr. Kt. 1 : 25000, Bl. 65/3 Mondsee, Salzkammergut, Osterreich). Diplomarbeit, Georg-August- Universitat Gottingen, Gottingen, Germany.

  • Hilbe, M. and Anselmetti, F. S., 2015. Mass Movement-Induced Tsunami Hazard on Perialpine Lake Lucerne (Switzerland): Scenarios and Numerical Experiments. Pure and Applied Geophysics, 172/2, 545-568. https://doi.org/10.1007/s00024-014-0907-7

  • Hinderer, M., 2001. Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta, 14/4, 231-263. https://doi.org/10.1080/09853111.2001.11432446

  • Hittenberger, V. R., Mittendorfer, F., Maierhofer, G., Keil, J., Bauer, J., Eder, M. and Czizsek, R., 2006. Tunnel Kienbergwand. Felsbau, 24/1, 18-30.

  • Huber, A., 1982. Felsbewegungen und Uferabbruche an Schweizer Seen, ihre Ursachen und Auswirkungen. Eclogae Geol. Helv., 75/3, 563-578. https://doi.org/10.5169/seals-165242

  • Irlweck, K. and Danielopol, D. L., 1985. Caesium-137 and lead-210 dating of recent sediments from Mondsee (Austria). Hydrobiologia, 128/2, 175-185. https://doi.org/10.1007/BF00008737

  • Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P. W. and Schluchter, C., 2008. Chronology of the last glacial cycle in the European Alps. Journal of Quaternary Science, 23/6-7, 559-573. https://doi.org/10.1002/jqs.1202

  • Jagsch, A. and Megay, K., 1982. Mondsee. In: Seenreinhaltung in Osterreich. Wien: Bundesministerium fur Land und Forstwirtschaft, 6, 155-163.

  • Janik, C. V., 1969. Die Pfahlbausiedlung See/Mondsee im Blickfeld landschaftlicher Forschung. Jahrbuch des oberosterreichischen Musealvereines, 114, 181-200.

  • Kampf, L., Brauer, A., Swierczynski, T., Czymzik, M., Mueller, P., and Dulski, P., 2014. Processes of flood-triggered detrital layer deposition in the varved Lake Mondsee sediment record revealed by a dual calibration approach. Journal of Quaternary Science, 29/5, 475-486. https://doi.org/10.1002/jqs.2721

  • Kampf, L., Mueller, P., Hollerer, H., Plessen, B., Naumann, R., Thoss, H., Guntner, A., Merz, B., and Brauer, A., 2015. Hydrological and sedimentological processes of flood layer formation in Lake Mondsee. The Depositional Record, 1/1, 18-37. https://doi.org/10.1002/dep2.2

  • Klee, R. and Schmidt, R., 1987. Eutrophication of Mondsee (Upper Austria) as indicated by the Diatom Stratigraphy of a Sediment Core. Diatom Research, 2/1, 55-76. https://doi.org/10.1080/0269249X.1987.9704985

  • Kremer, K., Simpson, G. and Girardclos, S., 2012. Giant Lake Geneva tsunami in AD 563. Nature Geoscience, 5/11, 756-757. https://doi.org/10.1038/ngeo1618

  • Kremer, K., Wirth, S. B., Reusch, A., Fah, D., Bellwald, B., Anselmetti, F. S., Girardclos, S. and Strasser, M., 2017. Lake-sediment based paleoseismology: Limitations and perspectives from the Swiss Alps. Quaternary Science Reviews, 168, 1-18. https://doi.org/10.1016/j.quascirev.2017.04.026

  • Lastras, G., Amblas, D., Calafat, A. M., Canals, M., Frigola, J., Hermanns, R. L., Lafuerza, S., Longva, O., Micallef, A., Sepulveda, S. A., Vargas, G., de Batist, M., van Daele, M., Azpiroz, M., Bascunan, I., Duhart, P., Iglesias, O., Kempf, P., and Rayo, X., 2013. Landslides Cause Tsunami Waves: Insights from Aysen Fjord, Chile. Eos, Transactions American Geophysical Union, 94/34, 297-298. https://doi.org/10.1002/2013EO340002

  • Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Huls, M., Milecka, K., Namiotko, T., Obremska, M., and Von Grafenstein, U., 2011. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). Journal of Quaternary Science, 26/3, 253-267. https://doi.org/10.1002/jqs.1448

  • Loffler, H., 1983. Aspects of the history and evolution of Alpine lakes in Austria. Hydrobiologia, 100/1, 143-152. https://doi.org/10.1007/BF00027427

  • Longva, O., Janbu, N., Blikra, L. H. and Boe, R., 2003. The 1996 Finneidfjord Slide; Seafloor Failure and Slide Dynamics. In: J. Locat, J. Mienert and L. Boisvert (eds.), Submarine Mass Movements and their Consequences. Springer, Dordrecht, pp. 531-538). https://doi.org/10.1007/978-94-010-0093-2_58

  • Lowe, D. R., 1976. Grain Flow and Grain Flow Deposits. Journal of Sedimentary Research, 46, 188-199. https://doi.org/10.1306/212F6EF1-2B24-11D7-8648000102C1865D

  • Lowe, D. R., 1982. Sediment Gravity Flows: II Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. Journal of Sedimentary Research, 52 (1), 279-297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D

  • Moernaut, J., De Batist, M., Heirman, K., Van Daele, M., Pino, M., Brummer, R., & Urrutia, R. (2009). Fluidization of buried mass-wasting deposits in lake sediments and its relevance for paleoseismology: Results from a reflection seismic study of lakes Villarrica and Calafquen (South-Central Chile). Sedimentary Geology, 213/3-4, 121-135. https://doi.org/10.1016/j.sedgeo.2008.12.002

  • Moernaut, J., Van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., Cardenas, J., Kilian, R., de Guevara, B. L., Pino, M., Urrutia, R. and De Batist, M., 2017. Lacustrine turbidites produced by surficial slope sediment remobilization: A mechanism for continuous and sensitive turbidite paleoseismic records. Marine Geology, 384, 159-176. https://doi.org/10.1016/j.margeo.2015.10.009

  • Mulder, T. and Cochonat, P., 1996. Classification of Offshore Mass Movements. SEPM Journal of Sedimentary Research, Vol. 66/1, 43-57. https://doi.org/10.1306/D42682AC-2B26-11D7-8648000102C1865D

  • Munsell Color (Firm), 2009. Munsell soil color charts.

  • Namiotko, T., Danielopol, D. L., von Grafenstein, U., Lauterbach, S., Brauer, A., Andersen, N., Huls, M., Milecka, K., Baltanas, A., Geiger, W., Belmecheri, S., Desmet, M., Erlenkeuser, H. and Nomade, J., 2015. Palaeoecology of late glacial and holocene profundal Ostracoda of pre-Alpine lake Mondsee (Austria) - A base for further (palaeo-) biological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 419/1, 23-36. https://doi.org/10.1016/j.palaeo.2014.09.009

  • Ndiaye, M., Clerc, N., Gorin, G., Girardclos, S. and Fiore, J., 2014. Lake Neuchatel (Switzerland) seismic stratigraphic record points to the simultaneous Wurmian deglaciation of the Rhone Glacier and Jura Ice Cap. Quaternary Science Reviews, 85, 1-19. https://doi.org/10.1016/j.quascirev.2013.11.017

  • OTS, 1999. Netze verhinderten groseres Ungluck auf Kienbergwand-Landesstrase. Retrieved December 15, 2017, from https://www.ots.at/presseaussendung/OTS_19990830_OTS0126/netze-verhindertengroesseres-unglueck-auf-kienbergwand-landesstrasse

  • Prager, C., Zangerl, C., Patzelt, G. and Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science, 8/2, 377-407. https://doi.org/10.5194/nhess-8-377-2008

  • Preusser, F., Reitner, J. M. and Schluchter, C., 2010. Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss Journal of Geosciences, 103/3, 407-426. https://doi.org/10.1007/s00015-010-0044-y

  • Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard- Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E. and Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research Atmospheres, 111/6, 1-16. https://doi.org/10.1029/2005JD006079

  • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and van der Plicht, J., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon, 55/4, 1869-1887. https://doi.org/10.2458/azu_js_rc.55.16947

  • Reitner, J. M., 2011. Das Inngletschersystem wahrend des Wurm-Glazials. In: Arbeitstagung der Geologischen Bundesanstalt 2011 - Achenkirch (pp. 79-88). https://doi.org/10.13140/RG.2.1.3754.1520

  • Riesner, H., 2014. Klostergeschichte - Grundungssage. Retrieved October 9, 2017, from http://www.mondsee-kultur.at/geschichten.php?nid=41&us=1

  • Schadler, J., 1958. Der entleerte Gosausee. Geologische Beobachtungen am Seeboden. In: Jahrbuch des Oberosterreichischen Musealvereins. Linz: Oberosterreichischer Musealverein, 103, 191-218.

  • Schillereff, D. N., Chiverrell, R. C., Macdonald, N., and Hooke, J. M., 2014. Flood stratigraphies in lake sediments: A review. Earth-Science Reviews, 135, 17-37. https://doi.org/10.1016/j.earscirev.2014.03.011

  • Schmidt, R., 1991. Diatomeenanalytische Auswertung laminierter Sedimente fur die Beurteilung trophischer Langzeittrends am Beispiel des Mondsees (Oberosterreich). Wasser und Abwasser, 35, 109-123.

  • Schneider, J., Muller, J. and Sturm, M., 1987. Die sedimentologische Entwicklung des Attersees und des Traunsees im Spat- und Postglazial. Mitteilungen der Kommission fur Quartarforschung der Osterreichischen Akademie der Wissenschaften, 7, 51-78.

  • Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., and Ward, S. N., 2002. Prehistoric earthquake history revealed by lacustrine slump deposits. Geology, 30/12, 1131-1134. https://doi.org/10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2

  • Schnellmann, M., Anselmetti, F. S., Giardini, D. and McKenzie, J. A., 2006. 15,000 Years of mass-movement history in Lake Lucerne: Implications for seismic and tsunami hazards. Eclogae Geologicae Helvetiae, 99/3, 409-428. https://doi.org/10.1007/s00015-006-1196-7

  • Schnurrenberger, D., Russell, J. and Kelts, K., 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology, 29/2, 141-154. https://doi.org/10.1023/A:1023270324800

  • Schultze, E. and Niederreiter, R., 1990. Palaolimnologische Untersuchungen an einem Bohrkern aus dem Profundal des Mondsees (Oberosterreich). Linzer Biologische Beitrage, 22/1, 213-235.

  • Schulz, M., 2008. Pompeji der Steinzeit. Der Spiegel, 41, 160-162.

  • Simonneau, A., Chapron, E., Vanniere, B., Wirth, S. B., Gilli, A., Di Giovanni, C., Anselmetti, F. S., Desmet, M. and Magny, M., 2013. Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards. Climate of the Past, 9/2, 825-840. https://doi.org/10.5194/cp-9-825-2013

  • Sletten, K., Blikra, L. H., Ballantyne, C. K., Nesje, A. and Dahl, S. O., 2003. Holocene debris flows recognized in a lacustrine sedimentary succession: sedimentology, chronostratigraphy and cause of triggering. The Holocene, 13/6, 907-920. https://doi.org/10.1191/0959683603hl673rp

  • Strasser, M., Monecke, K., Schnellmann, M. and Anselmetti, F. S., 2013. Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology, 60/1, 319-341. https://doi.org/10.1111/sed.12003

  • Sturm, M. and Matter, A., 1978. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In: Modern and Ancient Lake Sediments (pp. 147-168). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1002/9781444303698.ch8

  • Swierczynski, T., 2012. A 7000 yr runoff chronology from varved sediments of Lake Mondsee (Upper Austria). Dissertation, Universitat Potsdam, Potsdam, Germany.

  • Swierczynski, T., Lauterbach, S., Dulski, P., & Brauer, A., 2009. Die Sedimentablagerungen des Mondsees (Oberosterreich) als ein Archiv extremer Abflussereignisse der letzten 100 Jahre. Klimawandel in Osterreich - Die Letzten 20.000 Jahre...und ein Blick voraus, 6, 115-126.

  • Swierczynski, T., Lauterbach, S., Dulski, P., & Brauer, A., 2012. Late Neolithic Mondsee Culture in Austria: living on lakes and living with flood risk? Climate of the Past Discussions, 8/6, 5893-5924. https://doi.org/10.5194/cpd-8-5893-2012

  • Swierczynski, T., Lauterbach, S., Dulski, P., Delgado, J., Merz, B., & Brauer, A., 2013. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quaternary Science Reviews, 80, 78-90. https://doi.org/10.1016/j.quascirev.2013.08.018

  • Tourismusverband MondSeeLand, 2017. Tauchen im Mondsee. Retrieved October 9, 2017, from http://mondsee.salzkammergut.at/detail/article/1248-tauchen-immondsee.html

  • Trachsel, M., Kamenik, C., Grosjean, M., McCarroll, D., Moberg, A., Brazdil, R., Buntgen, U., Dobrovolny, P., Esper, J., Frank, D. C., Friedrich, M., Glaser, R., Larocque-Tobler, I., Nicolussi, K. and Riemann, D., 2012. Multi-archive summer temperature reconstruction for the European Alps, AD 1053-1996. Quaternary Science Reviews, 46, 66-79. https://doi.org/10.1016/j.quascirev.2012.04.021

  • van Husen, D., 1989. Geologische Karte der Republik Osterreich 1:50000 - Kartenblatt 65 Mondsee.

  • van Husen, D., 2003. Als unsere Seen Gletscher waren - die eiszeitliche Entwicklung im Salzkammergut. In J. T. Weidinger, H. Lobitzer, & I. Spitzbart (Eds.), Beitrage zur Geologie des Salzkammergutes (pp. 215-222). Erkudok Institut Museum Gmunden.

  • van Husen, D., 2004. Quaternary glaciations in Austria. In J. Ehlers & P. L. Gibbard (Eds.), Quaternary Glaciations Extent and Chronology (Vol. 2, pp. 1-13). Elsevier. https://doi.org/10.1016/S1571-0866(04)80051-4

  • van Husen, D. and Egger, H., 2014. Geologische Karte der Republik Osterreich - Erlauterungen zu Blatt 65 Mondsee. Wien.

  • van Rensbergen, P., De Batist, M., Beck, C. and Manalt, F., 1998. High-resolution seismic stratigraphy of late quaternary fill of Lake Annecy (northwestern Alps): evolution from glacial to interglacial sedimentary processes. Sedimentary Geology, 117/1-2, 71-96. https://doi.org/10.1016/S0037-0738(97)00123-1

  • Vernet, J.-P., Horn, R. and Badoux, H., 1974. Etude structurale du Leman par sismique reflexion continue. Eclogae Geologicae Helvetiae, 67/3, 515-529.

  • Wanner, H., Beer, J., Butikofer, J., Crowley, T. J., Cubasch, U., Fluckiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Kuttel, M., Muller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and

  • Widmann, M., 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews, 27/19-20, 1791-1828. https://doi.org/10.1016/j.quascirev.2008.06.013

  • Wieczorek, G. F. and Jager, S., 1996. Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California. Geomorphology, 15/1, 17-31. https://doi.org/10.1016/0169-555X(95)00112-I

  • Wiemer, G., Moernaut, J., Stark, N., Kempf, P., De Batist, M., Pino, M., Urrutia, R., de Guevara, B. L., Strasser, M. and Kopf, A. (2015). The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. International Journal of Earth Sciences, 104/5, 1439-1457. https://doi.org/10.1007/s00531-015-1144-8

  • Wood, D. M., 1985. Some fall-cone tests. Geotechnique, 35/1, 64-68. https://doi.org/10.1680/geot.1985.35.1.64.

OPEN ACCESS

Journal + Issues

Search