Chemical composition and antioxidant, cytotoxic, and insecticidal potential of Valeriana alliariifolia in Turkey

Open access

Abstract

Valeriana is a common plant species used for various healing purposes in folk medicine since antiquity. This study investigates the phytochemical profile, antioxidant, cytotoxic, and insecticidal activity of Valeriana alliariifolia Adams, a species that has traditionally been used in Turkey. For the analyses we prepared four root extracts of V. alliariifolia Adams using hexane (HM1), chloroform (CM1), ethanol (EM1), and water (WM1) for maceration. Additionally, two extracts were also prepared from its roots by maceration separately with ethanol (EM2) and water (WM2). One sample was prepared as a water infusion (WI), according to the procedure used in Turkish traditional medicine. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation scavenging activity tests showed that ethanol extracts had the strongest antioxidant activity: EM1 (IC50 – DPPH: 17.694 µg/mL; ABTS: 23.8 µg/mL) and EM2 (IC50 – DPPH: 20 µg/mL; ABTS: 21.5 µg/mL). The hexane extract, HM1, was the most cytotoxic (IC50<10 µg/mL against HepG2 and HUVEC) and EM2 strongly cytotoxic (IC50<10 µg/mL against HepG2 and IC50: 11.96 µg/mL against HUVEC). The extracts with demonstrated cytotoxic activities were further examined to check their insecticidal activity against adult female mosquito Aedes aegypti and first instar Ae. aegypti larvae. HM1 was the most effective (90±10 %), which was consistent with its cytotoxic activity. Because of the high antioxidant, cytotoxic, and insecticidal activities, we ran phytochemical analyses of the HM1, EM1, and EM2 extracts with GC-MS (for HM1) and LC-MS/MS (for EM1 and EM2). We also analysed the composition of the essential oil obtained from V. alliariifolia roots by micro-distillation in order to compare its content with HM1, which contains volatile compounds. Phytochemical analyses revealed that the major compound in HM1 was isovaleric acid (16 %) and in the essential oil 1,8-cineole (2.9 %). EM1 and EM2 contained 5-O-caffeoylquinic acid (chlorogenic acid), verbascoside (acteoside), and 3,5-dicaffeoylquinic acid as major components. In the light of our findings and available literature, we can conclude that V. alliariifolia has a good bioactive potential that could be used for different purposes, including the development of new agents for the treatment of various diseases. The difference in the content between the essential oil and HM1 was remarkable. It suggests that the variability observed in the activity of the samples was a result of composition and that, therefore, the aim of treatment should dictate which type of preparation is to be selected. An added value of our study is that it determined verbascoside and methylquercetin rutinoside for the first time in the Valeriana extracts.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Richardson IBK. Valeriana. In: Davis PH editor. Flora of Turkey and the East Aegean islands. Vol. 4. Edinburgh: Edinburgh University Press; 1972. p. 551–8.

  • 2. Davis PH editor. Flora of Turkey and the East Aegean islands. Vol. 10. Supplement I. Edinburgh: Edinburgh University Press; 1988.

  • 3. Güner A Özhatay N Ekim T Başer KHC editors. Flora of Turkey and the east aegean islands. Vol. 11. Edinburgh: Edinburgh University Press; 2008.

  • 4. Taherpour AA Maroofi H Bajelani O Larijani K. Chemical composition of the essential oil of Valeriana alliariifolia Adams of Iran. Nat Prod Res 2010;24:973–8. doi: 10.1080/14786410902900010

  • 5. Aslan S. Valeriana L. In: Güner A Aslan S Ekim T Vural M Babac MT editors. Turkiye bitkileri listesi (damarli bitkiler) [List of Turkish Flora (vascular plants) in Turkish]. Istanbul: Nezahat Gokyigit Botanik Bahcesi ve Flora Arastirmalari Dernegi Yayini; 2012. p. 322–5.

  • 6. Baytop T. Türkiye’de Bitkiler Ile Tedavi (Geçmişte ve Bugün) [Therapy with medicinal plants in Turkey (past and present) in Turkish]. Istanbul: Nobel Tip Kitapevleri Ltd Sti; 1999.

  • 7. Bos R Woerdenbag HJ van Putten FMS Hendriks H Scheffer JJC. Seasonal variation of the essential oil valerenic acid and derivatives and velopotriates in Valeriana officinalis roots and rhizomes and the selection of plants suitable for phytomedicines. Planta Med 1998;64:143–7. doi: 10.1055/s-2006-957392

  • 8. Wang Y Jin L Yu S Shi Q Gu Y Kiyota H. Chemical constituents of plants from the genus Valeriana. Mini-Rev Org Chem 2010;7:161–72. doi: 10.2174/157019310791065537

  • 9. Şen B Mat A. Chemical and medicinal evaluations of the Valeriana species in Turkey. J Fac Pharm Istanbul 2015;45:267–76.

  • 10. Xu K Lin Y Zhang R Lan M Chen C Li S Zuo C Chen C Zhang T Yan Z. Evaluation of safety of iridoids rich fraction from Valeriana jatamansi Jones: Acute and sub-chronic toxicity study in mice and rats. J Ethnopharmacol 2015;172:386–94. doi: 10.1016/j.jep.2015.06.046

  • 11. Aydın F Yurdakok Dikmen B Kismali G. The potential cytotoxic effects of Valeriana officinalis extract on prostate cancer cell lines DU-145 and PC-3. Toxicol Lett 2016;258(Supplement):S299. doi: 10.1016/j.toxlet.2016.06.2037

  • 12. Lin S Zhang Z-X Chen T Ye J Dai W-X Shan L Su J Shen Y-H Li H-L Liu R-H Xu X-K Wang H Zhang W-D. Characterization of chlorinated valepotriates from Valeriana jatamansi. Phytochemistry 2013;85:185–93. doi: 10.1016/j.phytochem.2012.08.015

  • 13. Wang R-J Chen H-M Yang F Deng Y Ao H Xie X-F Li H-X Zhang H Cao Z-X Zhu L-X Chen Y Peng C Tan Y-Z. Iridoids from the roots of Valeriana jatamansi Jones. Phytochemistry 2017;141:156–61. doi: 10.1016/j.phytochem.2017.05.010

  • 14. Kırmızıbekmez H Kúsz N Bérdi P Zupkó I Hohmann J. New iridoids from the roots of Valeriana dioscoridis Sm. Fitoterapia 2018;130:73–8. doi: 10.1016/j.fitote.2018.08.007

  • 15. Liu Y-H Wu P-Q Hu Q-L Pei Y-J Qi F-M Zhang Z-X Fei D-Q. Cytotoxic and antibacterial activities of iridoids and sesquiterpenoids from Valeriana jatamansi. Fitoterapia 2017;123:73–8. doi: 10.1016/j.fitote.2017.09.011

  • 16. Dua VK Alam MF Pandey AC Rai S Chopra AK Kaul VK Dash AP. Insecticidal activity of Valeriana jatamansi (Valerianaceae) Against Mosquitoes. J Am Mosq Control Assoc 2008;24:315–8. doi: 10.2987/5642.1

  • 17. Tan Y-Z Yong Y Dong Y-H Wang R-J Li H-X Zhang H Guo D-L Zhang S-J Dong X-P Xie X-F. A new secoiridoid glycoside and a new sesquiterpenoid glycoside from Valeriana jatamansi with neuroprotective activity. Phytochem Lett 2016;17:177–80. doi: 10.1016/j.phytol.2016.07.020

  • 18. Bardakçı H Demirci B Yeşilada E Kırmızıbekmez H Başer KHC. Chemical composition of the essential oil of the subterranean parts of Valeriana alliariifolia. Rec Nat Prod 2012;6:89–92.

  • 19. Özgökçe F. Özçelik H. Ethnobotanical aspects of some Anatolia Turkey. Econ Bot 2004;58:697–704. doi: 10.1663/0013-0001(2004)058[0697:EAOSTI]2.0.CO;2

  • 20. Oz-Aydın S Dirmenci T Tumen G Başer KHC. Plants used as analgesic in the folk medicine of Turkey. In: Ertug ZF editor. Proceedings of the IVth International Congress of Ethnobotany (ICEB 2005); 21–26 August 2005; Istanbul Turkey. Istanbul: Yeditepe University; 2006. p. 167–71.

  • 21. Fakir H Korkmaz M Güller B. Medicinal plant diversity of western Mediterranean region in Turkey. JABS 2009;3:33–43.

  • 22. Kaya DA. [Çukurova bölgesinde farklı sıra arası ve hasat zamanlarında kediotu (Valeriana officinalis L.) bitkisinin verim ve uçucu yağ kalitesinin araştırılması in Turkish]. [PhD Thesis]. Adana: Cukurova University; 2006.

  • 23. Özbay O Aslan S Kartal M Kurucu S Bos R Woerdenbag HJ Kayser O. Preliminary examination of the composition of the essential oil from the roots and rhizomes of Valeriana alpestris Stev. growing in Turkey. J Essent Oil Res 2009;21:555–7. doi: 10.1080/10412905.2009.9700243

  • 24. Aslan S Kartal M Kurucu S Kuiper JM Kruizinga WH Bos R Woerdenbag HJ Kayser O. Composition of the essential oil from roots and rhizomes of Valeriana phu L. growing wild in Turkey. J Essent Oil Res 2009;21:437–40. doi: 10.1080/10412905.2009.9700212

  • 25. Ebrahimzadeh H Radjabian T Tousi AE Nikham V Mozaffarian V. Evaluation of some Iranian wild species from Valerianaceae as commercial sources of valepotriates. J Biol Sci 2008;8:549–55. doi: 10.3923/jbs.2008.549.555

  • 26. Samaneh ET Tayebeh R Hassan E Vahid N. Composition of essential oils in subterranean organs of three species of Valeriana L. Nat Prod Res 2010;24:1834–42. doi: 10.1080/14786419.2010.482051

  • 27. Ozdemir A Turkoglu V Demir H. In vitro effect of some plant extracts on acetylcholinesterase enzyme in human erythrocytes and serum. Fresen Environ Bull 2013;22:2510–5.

  • 28. Karadeniz A Çinbilgel I Gün SŞ Çetin A. Antioxidant activity of some Turkish medicinal plants. Nat Prod Res 2015;29:2308–12. doi: 10.1080/14786419.2015.1005618

  • 29. Fu W Chen J Cai Y Lei Y Chen L Pei L Zhou D Liang X Ruan J. Antioxidant free radicalscavenging anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch.et Sav.) Ching. J Ethnopharmacol 2010;130:521–8. doi: 10.1016/j.jep.2010.05.039

  • 30. Re R Pellegrini N Proteggente A Pannala A Yang M Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231–7. doi: 10.1016/s0891-5849(98)00315-3

  • 31. Taşkın T Çam ME Taşkın D Rayaman E. In vitro and In vivo biological activities and phenolic characterization of Thymus praecox subsp. skorpilii var. skorpilii. J Food Meas Charact 2019;13:536–44. doi: 10.1007/s11694-018-9967-1

  • 32. Şen B Kessler S Gürdal B Kiemer A Mat A. The difference between the extracts of Erica manipuliflora in flowering and fruiting periods in terms of the cytotoxic effects. J Fac Pharm Istanbul Univ 2016;46:71–8.

  • 33. Kessler SM Pokorny J Zimmer V Laggai S Lammert F Bohle RM Kiemer AK. IGF2 mRNA binding protein p62/IMP2-2 in hepatocellular carcinoma: antiapoptotic action is independent of IGF2/PI3K signaling. Am J Physiol Gastrointest Liver Physiol 2013;304:G328–36. doi: 10.1152/ajpgi.00005.2012

  • 34. Kiemer AK Weber NC Fürst R Bildner N Kulhanek-Heinze S Vollmar AM. Inhibition of p38 MAPK Activation via Induction of MKP-1: atrial natriuretic peptide reduces TNF-α-induced actin polymerization and endothelial permeability. Circ Res 2002;90:874–81. doi: 10.1161/01.res.0000017068.58856.f3

  • 35. Diesel B Ripoche N Risch RT Tierling S Walter J Kiemer AK. Inflammation-induced up-regulation of TLR2 expression in human endothelial cells is independent of differential methylation in the TLR2 promoter CpG island. Innate Immun 2011;18:112–23. doi: 10.1177/1753425910394888

  • 36. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4

  • 37. Tabanca N Bernier UR Agramonte NM Tsikolia M Bloomquist JR. Discovery of repellents from natural products. Curr Org Chem 2016;20:2690–702. doi: 10.2174/1385272820666160421151503

  • 38. Pridgeon JW Pereira RM Becnel JJ Allan SA Clark GG Linthicum KJ. Susceptibility of Aedes aegypti Culex quinquefasciatus Say and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action. J Med Entomol 2008;45:82–7. doi: 10.1093/jmedent/45.1.82

  • 39. Masi M Cimmino A Tabanca N Becnel JJ Bloomquist JR Evidente A. A survey of bacterial fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae) the vector of yellow and dengue fevers and Zika virus. Open Chem 2017;15:156–66. doi: 10.1515/chem-2017-0019

  • 40. Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Carol Stream (IL): Allured Publishing Corporation; 2007.

  • 41. Hochmuth DH. MassFinder-4. Hamburg: Hochmuth Scientific Consulting; 2008.

  • 42. McLafferty FW Stauffer DB. The Wiley/NBS Registry of Mass Spectral Data. New York: J. Wiley and Sons; 1989.

  • 43. Göger F Köse YB Göger G Demirci F. Phytochemical characterization of phenolics by LC-MS/MS and biological evaluation of Ajuga orientalis from Turkey. Bangladesh J Pharmacol 2015;10:639–44. doi: 10.3329/bjp.v10i3.23500

  • 44. Navarrete A Avula B Choi Y-W Khan IA. Chemical fingerprinting of Valeriana species: simultaneous determination of valerenic acids flavonoids and phenylpropanoids using liquid chromatography with ultraviolet detection. J AOAC Int 2006;89:8–15. PMID: 16512222

  • 45. Marder M Viola H Wasowski C Fernández S Medina JH Paladini AC. 6-Methylapigenin and hesperidin: new Valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 2003;75:537–45. doi: 10.1016/s0091-3057(03)00121-7

  • 46. Meinhart AD Damin FM Caldeirão L da Silveira TFF Filho JT Godoy HT. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res Int 2017;99:522–30. doi: 10.1016/j.foodres.2017.06.017

  • 47. Helmja K. Determination of phenolic compounds and their antioxidative capability in plant extracts. [PhD thesis]. Tallinn: Tallinn University of Technology; 2010.

  • 48. Wang P Kang J Zheng R Yang Z Lu J Gao J Jia Z. Scavenging effects of phenylpropanoid glycosides from Pedicularis on superoxide anion and hydroxyl radical by Spin trapping method(95)02255–4. Biochem Pharmacol 1996;51:687–91. doi: 10.1016/S0006-2952(95)02255-4

  • 49. Aleo E Ricci R Passi S Cataudella S. A novel cyt C-H2O2-chemiluminescence assay for measuring the reducing/antioxidant capacity of a wide range of hydrophilic and lipophilic antioxidants and biological samples. Prog Nutr 2005;3:154–82.

  • 50. Funes L Fernández-Arroyo S Laporta O Pons A Roche E Segura-Carretero A Fernández-Gutiérrez A Micol V. Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract. Food Chem 2009;117:589–98. doi: 10.1016/j.foodchem.2009.04.059

  • 51. Hung TM Na M Thuong PT Su ND Sok D Song KS Seong YH Bae K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J Ethnopharmacol 2006;108:188–92. doi: 10.1016/j.jep.2006.04.029

  • 52. Jung HA Park JC Chung HY Kim J Choi JS. Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch Pharm Res 1999;22:213–8. doi: 10.1007/BF02976549

  • 53. Wilmsen PK Spada DS Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem 2005;53:4757–61. doi: 10.1021/jf0502000

  • 54. Wang J Lou J Luo C Zhou L Wang M Wang L. Phenolic compounds from Halimodendron halodendron (Pall.) voss and their antimicrobial and antioxidant activities. Int J Mol Sci 2012;13:11349–64. doi: 10.3390/ijms130911349

  • 55. Scragg MA Cannon SJ Williams DM. Comparative cytotoxic effects of short-chain fatty acids produced by periodontal pathogens on two cultured fibroblast line. Microb Ecol Health Dis 1994;7:83–90. doi: 10.3109/08910609409141576

  • 56. Bos R Hendriks H Scheffer JJC Woerdenbag HJ. Cytotoxic potential of valerian constituents and valerian tinctures. Phytomedicine 1998;5:219–25. doi: 10.1016/S0944-7113(98)80032-9

  • 57. Russo R Ciociaro A Berliocchi L Cassiano MG Rombolà L Ragusa S Bagetta G Blandini F Corasaniti MT. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells. Fitoterapia 2013;89:48–57. doi: 10.1016/j.fitote.2013.05.014

  • 58. Manassero CA Girotti JR Mijailovsky S García de Bravo M Polo M. In vitro comparative analysis of antiproliferative activity of essential oil from mandarin peel and its principal component limonene. Nat Prod Res 2013;27:1475–8. doi: 10.1080/14786419.2012.718775

  • 59. Al-Gendy AA El-Sayed MA Hamdan DI El-Shazly AM. Volatile constituents antimicrobial and cytotoxic activities of citrus reticulata Blanco Cultivar Murcott. Int J Pharmacogn Phytochem 2017;9:376–86. doi: 10.25258/phyto.v9i2.8089

  • 60. Sivropoulou A Papanikolaou E Nikolaou C Kokkini S Lanaras T Arsenakis M. Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 1996;44:1202–5. doi: 10.1021/jf950540t

  • 61. Mehdi SJ Ahmad A Irshad M Manzoor N Rizvi MMA. Cytotoxic effect of carvacrol on human cervical cancer cells. Biol Med 2011;3:307–12. doi: 10.4172/0974-8369.10000119

  • 62. Llana-Ruiz-Cabello M Gutiérrez-Praena D Pichardo S Moreno FJ Bermúdez JM Aucejo S Cameán AM. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem Toxicol 2014;64:281–90. doi: 10.1016/j.fct.2013.12.005

  • 63. Coccimiglio J Alipour M Jiang ZH Gottardo C Suntres Z. Antioxidant antibacterial and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents. Oxid Med Cell Longev 2016;2016:ID1404505. doi: 10.1155/2016/1404505

  • 64. Al-Fatlawi AA Rahisuddin Ahmad A. Cytotoxicity and pro-apoptotic activity of carvacrol on human breast cancer cell line MCF-7. World J Pharm Sci 2014;2:1218–23.

  • 65. Loizzo MR Tundis R Menichini F Saab AM Statti GA Menichini F. Cytotoxic activity of essential oils from labiatae and lauraceae families against in vitro human tumor models. Anticancer Res 2007;27(5A):3293–9. PMID: 17970073

  • 66. Sampath S Veeramani V Krishnakumar GS Sivalingam U Madurai SL Chellan R. Evaluation of in vitro anticancer activity of 18-cineole-containing n-hexane extract of Callistemon citrinus (Curtis) Skeels plant and its apoptotic potential. Biomed Pharmacother 2017;93:296–307. doi: 10.1016/j.biopha.2017.06.056

  • 67. Saracoglu I Inoue M Calis I Ogihara Y. Studies on constituents with cytotoxic and cytostatic activity of two Turkish medicinal plants Phlomis armeniaca and Scutellaria salviifolia. Biol Pharm Bull 1995;18:1396–400. doi: 10.1248/bpb.18.1396

  • 68. Harput US Genc Y Saracoglu I. Cytotoxic and antioxidative activities of Plantago lagopus L. and characterization of its bioactive compounds. Food Chem Toxicol 2012;50:1554–9. doi: 10.1016/j.fct.2012.01.019

  • 69. Jiang Y Kusama K Satoh K Takayama E Watanabe S Sakagami H. Induction of cytotoxicity by chlorogenic acid in human oral tumor cell lines. Phytomedicine 2000;7:483–91. doi: 10.1016/S0944-7113(00)80034-3

  • 70. Natarajan N Thamaraseivan R Lingaiah H Srinivasan P Periyasamy BM. Effect of flavonone hesperidin on the apoptosis of human mammary carcinoma cell line MCF-7. Biomed Prevent Nutr 2011;1:207–15. doi: 10.1016/j.bionut.2011.07.001

  • 71. Banjerdpongchai R Wudtiwai B Khaw-On P Rachakhom W Duangnil N Kongtawelert P. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumour Biol 2016;37:227–37. doi: 10.1007/s13277-015-3774-7

  • 72. Yamauchi K Mitsunaga T Afroze SH Uddin MN. Structure-activity relationships of methylquercetin on anti-migration and anti-proliferation activity in B16 melanoma cells. Anticancer Res 2017;37:1575–9. doi: 10.21873/anticanres.11487

  • 73. Sak K Lust H Kase M Jaal J. Cytotoxic action of methylquercetins in human lung adenocarcinoma cells. Oncol Lett 2018;15:1973–8. doi: 10.3892/ol.2017.7466

  • 74. Chantraine J-M Laurent D Ballivian C Saavedra G Ibanez R Vilaseca A. Insecticidal activity of essential oils on Aedes aepgyti larvae. Phytother Res 1998;12:350–4. doi: 10.1002/(SICI)1099-1573(199808)12:5<350::AIDPTR311>3.0.CO;2-7

  • 75. Santos SRL Melo MA Cardoso AV Santos RLC de Sousa DP Cavalcanti SCH. Structure-activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 2011;84:150–3. doi: 10.1016/j.chemosphere.2011.02.018

  • 76. Silva WJ Dória GA Maia RT Nunes RS Carvalho GA Blank AF Alves PB Marçal RM Cavalcanti SCH. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol 2008;99:3251–5. doi: 10.1016/j.biortech.2007.05.064

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1.606

CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 14
PDF Downloads 30 30 15