A feasibility study on the association between residential greenness and neurocognitive function in middle-aged Bulgarians

Open access


Recent research has indicated that exposure to residential vegetation (“greenness”) may be protective against cognitive decline and may support the integrity of the corresponding brain structures. However, not much is known about these effects, especially in less affluent countries and in middle-aged populations. In this study, we investigated the associations between greenness and neurocognitive function. We used a convenience sample of 112 middle-aged Bulgarians and two cognitive tests: the Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological Battery (CERAD-NB) and the Montreal Cognitive Assessment (MoCA). In addition, structural brain imaging data were available for 25 participants. Participants’ home address was used to link cognition scores to the normalised difference vegetation index (NDVI), a measure of overall neighbourhood vegetation level (radii from 100 to 1,000 m). Results indicated that higher NDVI was consistently associated with higher CERAD-NB and MoCA scores across radial buffers and adjustment scenarios. Lower waist circumference mediated the effect of NDVI on CERAD-NB. NDVI100-m was positively associated with average cortical thickness across both hemispheres, but these correlations turned marginally significant (P<0.1) after correction for false discovery rate due to multiple comparisons. In conclusion, living in a greener neighbourhood might be associated with better cognitive function in middle-aged Bulgarians, with lower central adiposity partially accounting for this effect. Tentative evidence suggests that greenness might also contribute to structural integrity in the brain regions regulating cognitive functions. Future research should build upon our findings and investigate larger and more representative population groups.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. World Health Organization (WHO). Global Action Plan on the Public Health Response to Dementia 2017 - 2025. Geneva: WHO; 2017.

  • 2. Langa KM Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551–61. doi: 10.1001/jama.2014.13806

  • 3. Lin PJ Neumann PJ. The economics of mild cognitive impairment. Alzheimers Dement 2013;9:58–62. doi: 10.1016/j.jalz.2012.05.2117

  • 4. Jongsiriyanyong S Limpawattana P. Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Demen 2018;33:500–7. doi: 10.1177/1533317518791401

  • 5. World Health Organization (WHO). Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. Geneva: WHO; 2019.

  • 6. Markevych I Schoierer J Hartig T Chudnovsky A Hystad P Dzhambov AM de Vries S Triguero-Mas M Brauer M Nieuwenhuijsen MJ Lupp G Richardson EA Astell-Burt T Dimitrova D Feng X Sadeh M Standl M Heinrich J Fuertes E. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ Res 2017;158:301–17. doi: 10.1016/j.envres.2017.06.028

  • 7. Tzivian L Winkler A Dlugaj M Schikowski T Vossoughi M Fuks K Weinmayr G Hoffmann B. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int J Hyg Environ Health 2015;218:1–11. doi: 10.1016/j.ijheh.2014.08.002

  • 8. Clark C Paunovic K. WHO Environmental Noise Guidelines for the European Region: A systematic review on environmental noise and cognition. Int J Environ Res Public Health 2018;15(2). pii: E285. doi: 10.3390/ijerph15020285

  • 9. Kaplan S. The restorative benefits of nature: Towards an integrative framework. J Environ Psychol 1995;15:169–82. doi: 10.1016/0272-4944(95)90001-2

  • 10. Kaplan R Kaplan S. The Experience of Nature: Y Psychological Perspective. New York: Cambridge University Press; 1989.

  • 11. Norwood MF Lakhani A Maujean A Zeeman H Creux O Kendall E. Brain activity underlying mood and the environment: A systematic review. J Environ Psychol 2019;65:101321. doi: 10.1016/j.jenvp.2019.101321

  • 12. Browning MHEM Olvera Alvarez HA. Editorial commentary: Scanning for threats and natural environments giving our reptilian brains a break. Trends Cardiovasc Med 2019;pii:S1050-1738(19)30097-0. doi: 10.1016/j.tcm.2019.07.006

  • 13. Markevych I Thiering E Fuertes E Sugiri D Berdel D Koletzko S von Berg A Bauer CP Heinrich J. A cross-sectional analysis of the effects of residential greenness on blood pressure in 10-year old children: results from the GINIplus and LISAplus studies. BMC Public Health 2014;14:477. doi: 10.1186/1471-2458-14-477

  • 14. Dzhambov AM Markevych I Lercher P. Greenspace seems protective of both high and low blood pressure among residents of an Alpine valley. Environ Int 2018;121:443–52. doi: 10.1016/j.envint.2018.09.044

  • 15. Yang BY Markevych I Heinrich J Bloom MS Qian Z Geiger SD Vaughn M Liu S Guo Y Dharmage SC Jalaludin B Knibbs LD Chen D Jalava P Lin S Hung-Lam Yim S Liu KK Zeng XW Hu LW Dong GH. Residential greenness and blood lipids in urban-dwelling adults: The 33 Communities Chinese Health Study. Environ Pollut 2019;250:14–22. doi: 10.1016/j.envpol.2019.03.128

  • 16. Persson Å Pyko A Lind T Bellander T Östenson CG Pershagen G Eriksson C Lõhmus M. Urban residential greenness and adiposity: A cohort study in Stockholm County. Environ Int 2018;121:832–41. doi: 10.1016/j.envint.2018.10.009

  • 17. Twohig-Bennett C Jones A. The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ Res 2018;166:628–37. doi: 10.1016/j.envres.2018.06.030

  • 18. Kühn S Düzel S Eibich P Krekel C Wüstemann H Kolbe J Martensson J Goebel J Gallinat J Wagner GG Lindenberger U. In search of features that constitute an “enriched environment” in humans: Associations between geographical properties and brain structure. Sci Rep 2017;7:11920. doi: 10.1038/s41598-017-12046-7

  • 19. Dadvand P Pujol J Macià D Martínez-Vilavella G Blanco-Hinojo L Mortamais M Alvarez-Pedrerol M Fenoll R Esnaola M Dalmau-Bueno A López-Vicente M Basagaña X Jerrett M Nieuwenhuijsen MJ Sunyer J. The association between lifelong greenspace exposure and 3-dimensional brain magnetic resonance imaging in Barcelona schoolchildren. Environ Health Perspect 2018;126:027012. doi: 10.1289/EHP1876

  • 20. Bahchevanov K. [Early neurological and cognitive impairment in metabolic syndrome in Bulgarian]. [PhD thesis]. Plovdiv: Medical University of Plovdiv; 2017.

  • 21. Morris JC Heyman A Mohs RC Hughes JP van Belle G Fillenbaum G Mellits ED Clark C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989;39:1159–65. doi: 10.1212/wnl.39.9.1159

  • 22. Fuks KB Wigmann C Altug H Schikowski T. Road traffic noise at the residence annoyance and cognitive function in elderly women. Int J Environ Res Public Health 2019;16(10):pii: E1790. doi: 10.3390/ijerph16101790

  • 23. Chandler MJ Lacritz LH Hynan LS Barnard HD Allen G Deschner M Weiner MF Cullum CM. A total score for the CERAD neuropsychological battery. Neurology 2005;65:102–6. doi: 10.1212/01.wnl.0000167607.63000.38

  • 24. Nasreddine ZS Phillips NA Bédirian V Charbonneau S Whitehead V Collin I Cummings JL Chertkow H. The Montreal Cognitive Assessment MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–9. doi: 10.1111/j.1532-5415.2005.53221.x

  • 25. Larner AJ. Screening utility of the Montreal Cognitive Assessment (MoCA): in place of - or as well as - the MMSE? Int Psychogeriatr 2012;24:391–6. doi: 10.1017/S1041610211001839

  • 26. Bahchevanov KM Atanassova PA Chompalov KA Mitkov MD Milev BI Terzieva DD Naydenov VI Dosheva VS Masaldjieva RI Velkova KG Sirakov NV Kilova KP. Cortisol correlates with structural magnetic resonance imaging parameters in middle aged Bulgarian patients with metabolic syndrome: a pilot study. Folia Med (Plovdiv) 2018;60:546–52. doi: 10.2478/folmed-2018-0029

  • 27. Fischl B Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000;97:11050–5. doi: 10.1073/pnas.200033797

  • 28. Ségonne F Dale AM Busa E Glessner M Salat D Hahn HK Fischl B. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004;22:1060–75. doi: 10.1016/j.neuroimage.2004.03.032

  • 29. Fischl B Salat DH Busa E Albert M Dieterich M Haselgrove C van der Kouwe A Killiany R Kennedy D Klaveness S Montillo A Makris N Rosen B Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341–55. doi: 10.1016/s0896-6273(02)00569-x

  • 30. Desikan RS Ségonne F Fischl B Quinn BT Dickerson BC Blacker D Buckner RL Dale AM Maguire RP Hyman BT Albert MS Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80. doi: 10.1016/j.neuroimage.2006.01.021

  • 31. Ries ML Carlsson CM Rowley HA Sager MA Gleason CE Asthana S Johnson SC. Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J Am Geriatr Soc 2008;56:920–34. doi: 10.1111/j.1532-5415.2008.01684.x

  • 32. Yang H Xu H Li Q Jin Y Jiang W Wang J Wu Y Li W Yang C Li X Xiao S Shi F Wang T. Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls. Gen Psychiatr 2019;32:e100005. doi: 10.1136/gpsych-2018-100005

  • 33. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 1979;8:127–50. doi: 10.1016/0034-4257(79)90013-0

  • 34. Dadvand P Tischer C Estarlich M Llop S Dalmau-Bueno A López-Vicente M Valentín A de Keijzer C Fernández-Somoano A Lertxundi N Rodriguez-Dehli C Gascon M Guxens M Zugna D Basagaña X Nieuwenhuijsen MJ Ibarluzea J Ballester F Sunyer J. Lifelong residential exposure to green space and attention: A population-based prospective study. Environ Health Perspect 2017;125:097016. doi: 10.1289/EHP694

  • 35. de Keijzer C Tonne C Basagaña X Valentín A Singh-Manoux A Alonso J Antó JM Nieuwenhuijsen MJ Sunyer J Dadvand P. Residential surrounding greenness and cognitive decline: a 10-year follow-up of the Whitehall II cohort. Environ Health Perspect 2018;126:077003. doi: 10.1289/EHP2875

  • 36. Gascon M Cirach M Martínez D Dadvand P Valentín A Plasència A Nieuwenhuijsen MJ. Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of Barcelona city. Urban For Urban Green 2016;19:88–94. doi: 10.1016/j.ufug.2016.07.001

  • 37. Gascon M Sánchez-Benavides G Dadvand P Martínez D Gramunt N Gotsens X Cirach M Vert C Molinuevo JL Crous-Bou M Nieuwenhuijsen M. Long-term exposure to residential green and blue spaces and anxiety and depression in adults: A cross-sectional study. Environ Res 2018;162:231–9. doi: 10.1016/j.envres.2018.01.012

  • 38. World Health Organization (WHO). Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation Geneva 8–11 December 2008. Geneva: WHO; 2011.

  • 39. Muntner P Shimbo D Carey RM Charleston JB Gaillard T Misra S Myers MG Ogedegbe G Schwartz JE Townsend RR Urbina EM Viera AJ White WB Wright JT Jr. Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension 2019;73:e35-e66. doi: 10.1161/HYP.0000000000000087

  • 40. Larkin A Geddes JA Martin RV Xiao Q Liu Y Marshall JD Brauer M Hystad P. Global land use regression model for nitrogen dioxide air pollution. Environ Sci Technol 2017;51:6957–64. doi: 10.1021/acs.est.7b01148

  • 41. Spectri. Разработване на актуализирани стратегически карти за шум на агломерация Пловдив [Development of Updated Strategic Noise Maps of Plovdiv Agglomeration in Bulgarian] Sofia 2016 [displayed 28 August 2019]. Available on http://www.plovdiv.webnoise.eu/PD16_NM_PRB1.pdf

  • 42. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise. Off J Eur Commun 2002;L189:12–25

  • 43. Kephalopoulos S Paviotti M Anfosso-Lédée F. Common Noise Assessment Methods in Europe (CNOSSOS-EU). Luxembourg: Publications Office of the European Union; 2012.

  • 44. Dzhambov A Hartig T Markevych I Tilov B Dimitrova D. Urban residential greenspace and mental health in youth: Different approaches to testing multiple pathways yield different conclusions. Environ Res 2018;160:47–59. doi: 10.1016/j.envres.2017.09.015

  • 45. Dempster AP Laird NM Rubin DB. Maximum likelihood estimation from incomplete data via the EM algorithm. J Royal Stat Soc B 1977;39:1–38.

  • 46. Blanca MJ Alarcón R Arnau J Bono R Bendayan R. Non-normal data: Is ANOVA still a valid option? Psicothema 2017;29:552–7. doi: 10.7334/psicothema2016.383

  • 47. Yang BY Guo Y Markevych I Qian ZM Bloom MS Heinrich J Dharmage SC Rolling CA Jordan SS Komppula M Leskinen A Bowatte G Li S Chen G Liu KK Zeng XW Hu LW Dong GH. Association of long-term exposure to ambient air pollutants with risk factors for cardiovascular disease in China. JAMA Netw Open 2019;2(3):e190318. doi: 10.1001/jamanetworkopen.2019.0318

  • 48. Hayes AF. Introduction to Mediation Moderation and Conditional Process Analysis: A Regression-Based Approach. New York: Guilford Press; 2013.

  • 49. Benjamini Y Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 1995;57:289–300. doi: 10.2307/2346101

  • 50. Dadvand P Nieuwenhuijsen MJ Esnaola M Forns J Basagaña X Alvarez-Pedrerol M Rivas I López-Vicente M De Castro Pascual M Su J Jerrett M Querol X Sunyer J. Green spaces and cognitive development in primary schoolchildren. Proc Natl Acad Sci U S A 2015;112:7937–42. doi: 10.1073/pnas.1503402112

  • 51. Zijlema WL Triguero-Mas M Smith G Cirach M Martinez D Dadvand P Gascon M Jones M Gidlow C Hurst G Masterson D Ellis N van den Berg M Maas J van Kamp I van den Hazel P Kruize H Nieuwenhuijsen MJ Julvez J. The relationship between natural outdoor environments and cognitive functioning and its mediators. Environ Res 2017;155:268–75. doi: 10.1016/j.envres.2017.02.017

  • 52. Tzivian L Dlugaj M Winkler A Weinmayr G Hennig F Fuks KB Vossoughi M Schikowski T Weimar C Erbel R Jöckel KH Moebus S Hoffmann B; Heinz Nixdorf Recall study Investigative Group. Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: a cross-sectional analysis of the Heinz Nixdorf Recall Study. Environ Health Perspect 2016;124:1361–8. doi: 10.1289/ehp.1509824

  • 53. Tzivian L Jokisch M Winkler A Weimar C Hennig F Sugiri D Soppa VJ Dragano N Erbel R Jöckel KH Moebus S Hoffmann B; Heinz Nixdorf Recall Study Group. Associations of long-term exposure to air pollution and road traffic noise with cognitive function-An analysis of effect measure modification. Environ Int 2017;103:30–8. doi: 10.1016/j.envint.2017.03.018

  • 54. Browning M Lee K. Within what distance does “greenness” best predict physical health? A systematic review of articles with GIS buffer analyses across the lifespan. Int J Environ Res Public Health 2017;14(7):pii: E675. doi: 10.3390/ijerph14070675

  • 55. Jagust W Harvey D Mungas D Haan M. Central obesity and the aging brain. Arch Neurol 2005;62:1545–8. doi: 10.1001/archneur.62.10.1545

  • 56. Baroncelli L Braschi C Spolidoro M Begenisic T Sale A Maffei L. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 2010;17:1092–103. doi: 10.1038/cdd.2009.193

  • 57. Tost H Reichert M Braun U Reinhard I Peters R Lautenbach S Hoell A Schwarz E Ebner-Priemer U Zipf A Meyer-Lindenberg A. Neural correlates of individual differences in affective benefit of real-life urban green space exposure. Nat Neurosci 2019;22:1389-93. doi: 10.1038/s41593-019-0451-y

  • 58. Tang C Tsai Y-P Lin Y-J Chen J-H Hsieh C-H Hung S-H Sullivan WC Tang H-F Chang C-Y. Using functional Magnetic Resonance Imaging (fMRI) to analyze brain region activity when viewing landscapes. Landscape Urban Plan 2017;162:137–44. doi: 10.1016/j.landurbplan.2017.02.007

  • 59. Bickart KC Dickerson BC Barrett LF. The amygdala as a hub in brain networks that support social life. Neuropsychologia 2014;63:235–48. doi: 10.1016/j.neuropsychologia.2014.08.013

  • 60. Demirakca T Brusniak W Tunc-Skarka N Wolf I Meier S Matthäus F Ende G Schulze TG Diener C. Does body shaping influence brain shape? Habitual physical activity is linked to brain morphology independent of age. World J Biol Psychiatry 2014;15:387–96. doi: 10.3109/15622975.2013.803600

  • 61. Helbich M Yao Y Liu Y Zhang J Liu P Wang R. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing China. Environ Int 2019;126:107–17. doi: 10.1016/j.envint.2019.02.013

  • 62. Helbich M. Toward dynamic urban environmental exposure assessments in mental health research. Environ Res 2018;161:129–35. doi: 10.1016/j.envres.2017.11.006

  • 63. Helbich M. Spatiotemporal contextual uncertainties in green space exposure measures: exploring a time series of the normalized difference vegetation indices. Int J Environ Res Public Health 2019;16(5):pii: E852. doi: 10.3390/ijerph16050852

  • 64. Helbich M. Dynamic Urban Environmental Exposures on Depression and Suicide (NEEDS) in the Netherlands: a protocol for a cross-sectional smartphone tracking study and a longitudinal population register study. BMJ Open 2019;9(8):e030075. doi: 10.1136/bmjopen-2019-030075

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1.606

CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 24
PDF Downloads 25 25 20