Cite

1. Parrón T, Requena M, Hernández AF, Alarcón R. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol Appl Pharmacol 2011;256:379–85. doi: 10.1016/j.taap.2011.05.00610.1016/j.taap.2011.05.00621601587Search in Google Scholar

2. Dardiotis E, Xiromerisiou G, Hadjichristodoulou C, Tsatsakis AM, Wilks MF, Hadjigeorgiou GM. The interplay between environmental and genetic factors in Parkinson’s disease susceptibility: the evidence for pesticides. Toxicology 2013;307:17–23. doi: 10.1016/j.tox.2012.12.01610.1016/j.tox.2012.12.01623295711Search in Google Scholar

3. Sanchez-Santed F, Colomina MT, Hernández EH. Organophosphate pesticide exposure and neurodegeneration. Cortex 2016;74:417–26. doi: 10.1016/j.cortex.2015.10.00310.1016/j.cortex.2015.10.00326687930Search in Google Scholar

4. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 2013;268:157–77. doi: 10.1016/j.taap.2013.01.02510.1016/j.taap.2013.01.02523402800Search in Google Scholar

5. Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 2005;113:1250–6. doi: 10.1289/ehp.756710.1289/ehp.7567128041116140637Search in Google Scholar

6. Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases – a mechanistic approach. Toxicol Lett 2014;230:85–103. doi: 10.1016/j.toxlet.2014.01.03910.1016/j.toxlet.2014.01.03924503016Search in Google Scholar

7. Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 2015;46:101–6. doi: 10.1016/j.neuro.2014.12.00210.1016/j.neuro.2014.12.00225514659Search in Google Scholar

8. Kumar A, Leinisch F, Kadiiska MB, Corbett J, Mason RP. Formation and implications of alpha-synuclein radical in Maneb- and paraquat-induced models of Parkinson’s disease. Mol Neurobiol 2016;53:2983–94. doi: 10.1007/s12035-015-9179-110.1007/s12035-015-9179-1463726525952542Search in Google Scholar

9. Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. Organophosphate pesticides and PON1 L55M in Parkinson’s disease progression. Environ Int 2017;107:75–81. doi: 10.1016/j.envint.2017.06.01810.1016/j.envint.2017.06.018560028928689109Search in Google Scholar

10. Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E. Priorities in Parkinson’s disease research. Nature Rev Drug Discovery 2011;10:377–93. doi: 10.1038/nrd343010.1038/nrd343021532567Search in Google Scholar

11. Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I, Obeso JA, Bezard E, Vila M. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 2014;75:351–62. doi: 10.1002/ana.2406610.1002/ana.2406624243558Search in Google Scholar

12. Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res 2009;674:3–22. doi: 10.1016/j.mrgentox.2008.11.01210.1016/j.mrgentox.2008.11.01219114126Search in Google Scholar

13. Furlong MA, Barr DB, Wolff MS, Engel SM. Prenatal exposure to pyrethroid pesticides and childhood behavior and executive functioning. Neurotoxicology 2017;62:231–8. doi: 10.1016/j.neuro.2017.08.00510.1016/j.neuro.2017.08.005562363828811173Search in Google Scholar

14. Costa LG. The neurotoxicity of organochlorine and pyrethroid pesticides. In: Handbook of clinical neurology. Vol. 131. Chapter 9. Amsterdam: Elsevier; 2015. p. 135–48. doi: 10.1016/B978-0-444-62627-1.00009-310.1016/B978-0-444-62627-1.00009-326563787Search in Google Scholar

15. Gasmi S, Rouabhi R, Kebieche M, Boussekine S, Salmi A, Toualbia N, Taib C, Bouteraa Z, Chenikher H, Henine S, Djabri B. Effects of Deltamethrin on striatum and hippocampus mitochondrial integrity and the protective role of Quercetin in rats. Environ Sci Pollut Res Int 2017;24:16440–57. doi: 10.1007/s11356-017-9218-810.1007/s11356-017-9218-828551743Search in Google Scholar

16. Saoudi M, Badraoui R, Bouhajja H, Ncir M, Rahmouni F, Grati M, Jamoussi K, Feki AE. Deltamethrin induced oxidative stress in kidney and brain of rats: Protective effect of Artemisia campestris essential oil. Biomed Pharmacother 2017;94:955–63. doi: 10.1016/j.biopha.2017.08.03010.1016/j.biopha.2017.08.03028810533Search in Google Scholar

17. Khan AM, Raina R, Dubey N, Verma PK. Effect of deltamethrin and fluoride co-exposure on the brain antioxidant status and cholinesterase activity in Wistar rats. Drug Chem Toxicol 2018;41:123–7. doi: 10.1080/01480545.2017.132100910.1080/01480545.2017.132100928503953Search in Google Scholar

18. Hussien HM, Abdou HM, Yousef MI. Cypermethrin induced damage in genomic DNA and histopathological changes in brain and haematotoxicity in rats: the protective effect of sesame oil. Brain Res Bull 2013;92:76–83. doi: 10.1016/j.brainresbull.2011.10.02010.1016/j.brainresbull.2011.10.02022085743Search in Google Scholar

19. Singh A, Tripathi P, Prakash O, Singh MP. Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration. Mol Neurobiol 2016;53:6849–58. doi: 10.1007/s12035-015-9577-410.1007/s12035-015-9577-426660326Search in Google Scholar

20. Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP. Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol 2015;51:448–65. doi: 10.1007/s12035-014-8696-710.1007/s12035-014-8696-724760363Search in Google Scholar

21. Agrawal S, Dixit A, Singh A, Tripathi P, Singh D, Patel DK, Singh MP. Cyclosporine A and MnTMPyP alleviate α-synuclein expression and aggregation in cypermethrin-induced Parkinsonism. Mol Neurobiol 2015;52:1619–28. doi: 10.1007/s12035-014-8954-810.1007/s12035-014-8954-825370934Search in Google Scholar

22. Nasuti C, Brunori G, Eusepi P, Marinelli L, Ciccocioppo R, Gabbianelli R. Early life exposure to permethrin: a progressive animal model of Parkinson’s disease. J Pharmacol Toxicol Methods 2017;83:80–6. doi: 10.1016/j.vascn.2016.10.00310.1016/j.vascn.2016.10.00327756609Search in Google Scholar

23. Nasuti C, Carloni M, Fedeli D, Gabbianelli R, Di Stefano A, Serafina CL, Silva I, Domingues V, Ciccocioppo R. Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of presenescent rats. Toxicology 2013;303:162–8. doi: 10.1016/j.tox.2012.09.01610.1016/j.tox.2012.09.01623174539Search in Google Scholar

24. Carloni M, Nasuti C, Fedeli D, Montani M, Amici A, Vadhana MD, Gabbianelli R. The impact of early life permethrin exposure on development of neurodegeneration in adulthood. Exp Gerontol 2012;47:60–6. doi: 10.1016/j.exger.2011.10.00610.1016/j.exger.2011.10.00622056222Search in Google Scholar

25. Galal MK, Khalaf AAA, Ogaly HA, Ibrahim MA. Vitamin E attenuates neurotoxicity induced by deltamethrin in rats. BMC Complementary Altern Med 2014;14:458. doi: 10.1186/1472-6882-14-45810.1186/1472-6882-14-458426546325439240Search in Google Scholar

26. Tripathi P, Singh A, Agrawal S, Prakash O, Singh MP. Cypermethrin alters the status of oxidative stress in the peripheral blood: relevance to Parkinsonism. J Physiol Biochem 2014;70:915–24. doi: 10.1007/s13105-014-0359-710.1007/s13105-014-0359-725270427Search in Google Scholar

27. Al-Afifi SH, Amani EY, Abd Alaazem KM. Protective effect of garlic extract against deltamethrin induced oxidative stress in rats. Anim Health Res J 2017;5:67–80Search in Google Scholar

28. Carloni M, Nasuti C, Fedeli D, Montani M, Vadhana MD, Amici A, Gabbianelli R. Early life permethrin exposure induces long-term brain changes in Nurr1, NF-κB and Nrf-2. Brain Res 2013;1515:19–28. doi: 10.1016/j.brainres.2013.03.04810.1016/j.brainres.2013.03.04823566817Search in Google Scholar

29. Khalatbary AR, Ghaffari E, Mohammadnegad B. Protective role of oleuropein against acute deltamethrin-induced neurotoxicity in rat brain. Iran Biom J 2015;19:247. doi: 10.7508/ibj.2015.04.009Search in Google Scholar

30. Arslan H, Özdemir S, Altun S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). Chemosphere 2017;180:491–9. doi: 10.1016/j.chemosphere.2017.04.05710.1016/j.chemosphere.2017.04.05728431387Search in Google Scholar

31. Abdelhafidh K, Mhadhbi L, Mezni A, Badreddine S, Beyrem H, Mahmoudi E. Protective effect of Zizyphus lotus jujube fruits against cypermethrin-induced oxidative stress and neurotoxicity in mice. Biomarkers 2017;23:167–73. doi: 10.1080/1354750X.2017.139060910.1080/1354750X.2017.139060929017403Search in Google Scholar

32. Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP. Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 2018;33:377–87. doi: 10.1007/s12640-017-9800-310.1007/s12640-017-9800-328840510Search in Google Scholar

33. Sharma P, Firdous S, Singh R. Neurotoxic effect of cypermethrin and protective role of resveratrol in Wistar rats. Int J Nutr Pharmacol Neurol Dis 2014;4:104–11. doi: 10.4103/2231-0738.12959810.4103/2231-0738.129598Search in Google Scholar

34. Kung TS, Richardson JR, Cooper KR, White LA. Developmental deltamethrin exposure causes persistent changes in dopaminergic gene expression, neurochemistry, and locomotor activity in zebrafish. Toxicol Sci 2015;146:235–43. doi: 10.1093/toxsci/kfv08710.1093/toxsci/kfv087451705325912032Search in Google Scholar

35. Guo J, Xu J, Zhang J, An L. Alteration of mice cerebral cortex development after prenatal exposure to cypermethrin and deltamethrin. Toxicol Lett 2018;287:1–9. doi: 10.1016/j.toxlet.2018.01.01910.1016/j.toxlet.2018.01.01929407790Search in Google Scholar

36. Nasuti C, Falcioni ML, Nwankwo IE, Cantalamessa F, Gabbianelli R. Effect of permethrin plus antioxidants on locomotor activity and striatum in adolescent rats. Toxicology 2008;251:45–50. doi: 10.1016/j.tox.2008.07.04910.1016/j.tox.2008.07.04918692543Search in Google Scholar

37. Romero A, Ramos E, Castellano V, Martínez MA, Ares I, Martínez M, Martínez-Larrañaga MR, Anadón A. Cytotoxicity induced by deltamethrin and its metabolites in SH-SY5Y cells can be differentially prevented by selected antioxidants. Toxicol in Vitro 2012;26:823–30. doi: 10.1016/j.tiv.2012.05.00410.1016/j.tiv.2012.05.00422634057Search in Google Scholar

38. Li H-Y, Wu S-Y, Shi N. Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS. Toxicol Lett 2007;171:87–98. doi: 10.1016/j.toxlet.2007.04.00710.1016/j.toxlet.2007.04.00717540521Search in Google Scholar

39. Ko J, Park JH, Park YS, Koh HC. PPAR-γ activation attenuates deltamethrin-induced apoptosis by regulating cytosolic PINK1 and inhibiting mitochondrial dysfunction. Toxicol Lett 2016;260:8–17. doi: 10.1016/j.toxlet.2016.08.01610.1016/j.toxlet.2016.08.01627553674Search in Google Scholar

40. Park YS, Park JH, Ko J, Shin IC, Koh HC. mTOR inhibition by rapamycin protects against deltamethrin-induced apoptosis in PC12 cells. Environ Toxicol 2017;32:109–21. doi: 10.1002/tox.2221610.1002/tox.2221626588882Search in Google Scholar

41. Bordoni L, Fedeli D, Nasuti C, Capitani M, Fiorini D, Gabbianelli R. Permethrin pesticide induces NURR1 up-regulation in dopaminergic cell line: Is the pro-oxidant effect involved in toxicant-neuronal damage? Comp Biochem Physiol C 2017;201:51–7. doi: 10.1016/j.cbpc.2017.09.00610.1016/j.cbpc.2017.09.00628943456Search in Google Scholar

42. Raszewski G, Lemieszek MK, Łukawski K. Cytotoxicity induced by cypermethrin in Human Neuroblastoma Cell Line SH-SY5Y. Ann Agric Environ Med 2016;23:106–10. doi: 10.5604/12321966.119686310.5604/12321966.119686327007526Search in Google Scholar

43. Romero A, Ramos E, Ares I, Castellano V, Martínez M, Martínez-Larrañaga M-R, Anadón A, Martínez MA. Oxidative stress and gene expression profiling of cell death pathways in alpha-cypermethrin-treated SH-SY5Y cells. Arch Toxicol 2017;91:2151–64. doi: 10.1007/s00204-016-1864-y10.1007/s00204-016-1864-y27704156Search in Google Scholar

44. Pandey A, Jauhari A, Singh T, Singh P, Singh N, Srivastava AK, Khan F, Pant AB, Parmar D, Yadav S. Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicol Res 2015;4:1578–86. doi: 10.1039/C5TX00200A10.1039/C5TX00200ASearch in Google Scholar

45. Raszewski G, Lemieszek MK, Łukawski K, Juszczak M, Rzeski W. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin Pharmacol Toxicol 2015;116:158–67. doi: 10.1111/bcpt.1228510.1111/bcpt.1228524975276Search in Google Scholar

46. Liu G-P, Shi N. The inhibitory effects of deltamethrin on dopamine biosynthesis in rat PC12 cells. Toxicol Lett 2006;161:195–9. doi: 10.1016/j.toxlet.2005.09.01110.1016/j.toxlet.2005.09.01116229977Search in Google Scholar

47. Clark JM, Symington SB. Advances in the mode of action of pyrethroids. Top Curr Chem 2012;314:49–72. doi: 10.1007/128_2011_26810.1007/128_2011_26822025067Search in Google Scholar

48. Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi JS, Symington S, Clark JM, Burr S, Ray D. Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. Neurotoxicology 2009;30(Suppl 1):S17–31. doi: 10.1016/j.neuro.2009.09.00210.1016/j.neuro.2009.09.00219766671Search in Google Scholar

49. Taylor-Wells J, Brooke BD, Bermudez I, Jones AK. The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. J Neurochem 2015;135:705–13. doi: 10.1111/jnc.1329010.1111/jnc.1329026296809Search in Google Scholar

50. Kumar Singh A, Nath Tiwari M, Prakash O, Pratap Singh M. A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol 2012;10:64–71. doi: 10.2174/15701591279936277910.2174/157015912799362779328684822942879Search in Google Scholar

51. Ogaly HA, Khalaf A, Ibrahim MA, Galal MK, Abd-Elsalam RM. Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain. Neurotoxicol Teratol 2015;50:23–31. doi: 10.1016/j.ntt.2015.05.00510.1016/j.ntt.2015.05.00526013673Search in Google Scholar

52. Nieradko-Iwanicka B, Borzęcki A. Subacute poisoning of mice with deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol Rep 2015;67:535–41. doi: 10.1016/j.pharep.2014.12.01210.1016/j.pharep.2014.12.01225933966Search in Google Scholar

53. Mani VM, Sadiq AMM. Naringin modulates the impairment of memory, anxiety, locomotor, and emotionality behaviors in rats exposed to deltamethrin; a possible mechanism association with oxidative stress, acetylcholinesterase and ATPase. Biomed Prev Nutr 2014;4:527–33. doi: 10.1016/j.bionut.2014.08.00610.1016/j.bionut.2014.08.006Search in Google Scholar

54. Mani VM, Asha S, Sadiq AMM. Pyrethroid deltamethrin-induced developmental neurodegenerative cerebral injury and ameliorating effect of dietary glycoside naringin in male wistar rats. Biomed Aging Pathol 2014;4:1–8. doi: 10.1016/j.biomag.2013.11.00110.1016/j.biomag.2013.11.001Search in Google Scholar

55. Khan AM, Sultana M, Raina R, Dubey N, Verma PK. Effect of sub-acute oral exposure of bifenthrin on biochemical parameters in crossbred goats. Proc Natl Acad Sci India Sec B Biol Sci 2013;83:323–8. doi: 10.1007/s40011-012-0150-x10.1007/s40011-012-0150-xSearch in Google Scholar

56. Starr JM, Scollon EJ, Hughes MF, Ross DG, Graham SE, Crofton KM, Wolansky MJ, Devito MJ, Tornero-Velez R. Environmentally relevant mixtures in cumulative assessments: an acute study of toxicokinetics and effects on motor activity in rats exposed to a mixture of pyrethroids. Toxicol Sci 2012;130:309–18. doi: 10.1093/toxsci/kfs24510.1093/toxsci/kfs24522872056Search in Google Scholar

57. Ray DE, Fry JR. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol Therap 2006;111:174–93. doi: 10.1016/j.pharmthera.2005.10.00310.1016/j.pharmthera.2005.10.00316324748Search in Google Scholar

58. Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP. Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 2012;33:404–15. doi: 10.1016/j.neurobiolaging.2010.02.01810.1016/j.neurobiolaging.2010.02.01820371137Search in Google Scholar

59. Singh AK, Tiwari MN, Dixit A, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP. Nigrostriatal proteomics of cypermethrin-induced dopaminergic neurodegeneration: microglial activation-dependent and-independent regulations. Toxicol Sci 2011;122:526–38. doi: 10.1093/toxsci/kfr11510.1093/toxsci/kfr11521561882Search in Google Scholar

60. Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R. In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 2017;340:411–23. doi: 10.1016/j.neuroscience.2016.10.07110.1016/j.neuroscience.2016.10.07127826104Search in Google Scholar

61. Darney K, Bodin L, Bouchard M, Côté J, Volatier J-L, Desvignes V. Aggregate exposure of the adult French population to pyrethroids. Toxicol Appl Pharmacol 2018;351:21–31. doi: 10.1016/j.taap.2018.05.00710.1016/j.taap.2018.05.00729753004Search in Google Scholar

62. dos Santos Oliveira L, da Silva LP, da Silva AI, Magalhães CP, de Souza SL, de Castro RM. Effects of early weaning on the circadian rhythm and behavioral satiety sequence in rats. Behav Processes 2011;86:119–24. doi: 10.1016/j.beproc.2010.10.00110.1016/j.beproc.2010.10.00120974233Search in Google Scholar

63. Vaiserman A. Early-life origin of adult disease: evidence from natural experiments. Exp Gerontol 2011;46:189–92. doi: 10.1016/j.exger.2010.08.03110.1016/j.exger.2010.08.03120833239Search in Google Scholar

64. Nasuti C, Gabbianelli R, Falcioni ML, Di Stefano A, Sozio P, Cantalamessa F. Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 2007;229:194–205. doi: 10.1016/j.tox.2006.10.01510.1016/j.tox.2006.10.01517140720Search in Google Scholar

65. Falcioni M, Nasuti C, Bergamini C, Fato R, Lenaz G, Gabbianelli R. The primary role of glutathione against nuclear DNA damage of striatum induced by permethrin in rats. Neuroscience 2010;168:2–10. doi: 10.1016/j.neuroscience.2010.03.05310.1016/j.neuroscience.2010.03.05320359525Search in Google Scholar

66. Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm 2007(Suppl 72):113–20. doi: 10.1007/978-3-211-73574-9_1410.1007/978-3-211-73574-9_1417982884Search in Google Scholar

67. Fedeli D, Montani M, Nasuti C, Gabbianelli R. Early life permethrin treatment induces in striatum of older rats changes in α-synuclein content. J Nutrigenet Nutrigenom 2014;7:75–93.Search in Google Scholar

68. Vences-Mejía A, Gómez-Garduño J, Caballero-Ortega H, Dorado-González V, Nosti-Palacios R, Labra-Ruíz N, Espinosa-Aguirre JJ. Effect of mosquito mats (pyrethroid-based) vapor inhalation on rat brain cytochrome P450s. Toxicol Mech Methods 2012;22:41–6. doi: 10.3109/15376516.2011.59144810.3109/15376516.2011.59144822080754Search in Google Scholar

69. García-Suástegui W, Ramos-Chávez L, Rubio-Osornio M, Calvillo-Velasco M, Atzin-Méndez J, Guevara J, Silva-Adaya D. The role of CYP2E1 in the drug metabolism or bioactivation in the brain. Oxid Med Cell Longev 2017;2017:4680732. doi: 10.1155/2017/468073210.1155/2017/4680732525965228163821Search in Google Scholar

70. Singh A, Mudawal A, Maurya P, Jain R, Nair S, Shukla RK, Yadav S, Singh D, Khanna VK, Chaturvedi RK, Mudiam MKR, Sethumadhavan R, Siddiqi MI, Parmar D. Prenatal exposure of cypermethrin induces similar alterations in xenobiotic-metabolizing cytochrome P450s and rate-limiting enzymes of neurotransmitter synthesis in brain regions of rat offsprings during postnatal development. Mol Neurobiol 2016;53:3670–89. doi: 10.1007/s12035-015-9307-y10.1007/s12035-015-9307-y26115703Search in Google Scholar

71. Singh A, Mudawal A, Shukla RK, Yadav S, Khanna VK, Sethumadhavan R, Parmar D. Effect of gestational exposure of cypermethrin on postnatal development of brain cytochrome P450 2D1 and 3A1 and neurotransmitter receptors. Mol Neurobiol 2015;52:741–56. doi: 10.1007/s12035-014-8903-610.1007/s12035-014-8903-625288152Search in Google Scholar

72. Rangel-Barajas C, Coronel I, Florán B. Dopamine receptors and neurodegeneration. Aging Dis 2015;6:349. doi: 10.14336/AD.2015.033010.14336/AD.2015.0330456721826425390Search in Google Scholar

73. Shahabi HN, Andersson D, Nissbrandt H. Cytochrome P450 2E1 in the substantia nigra: relevance for dopaminergic neurotransmission and free radical production. Synapse 2008;62:379–88. doi: 10.1002/syn.2050510.1002/syn.2050518288650Search in Google Scholar

74. Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity – Short review. Pestic Biochem Physiol 2010;98:145–50. doi: 10.1016/j.pestbp.2010.07.00610.1016/j.pestbp.2010.07.006Search in Google Scholar

75. Li H, Wu S, Ma Q, Shi N. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain. Toxicol Ind Health 2011;27:579–90. doi: 10.1177/074823371039340010.1177/0748233710393400Search in Google Scholar

76. Amin KA, Hashem KS. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res 2012;8:45. doi: 10.1186/1746-6148-8-4510.1186/1746-6148-8-45Search in Google Scholar

77. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017;482:426–31. doi: 10.1016/j.bbrc.2016.11.08810.1016/j.bbrc.2016.11.088Search in Google Scholar

78. Giray B, Gürbay A, Hincal F. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol. Toxicol Lett 2001;118:139–46. doi: 10.1016/S0378-4274(00)00277-010.1016/S0378-4274(00)00277-0Search in Google Scholar

79. Kanbur M, Siliğ Y, Eraslan G, Karabacak M, Sarıca ZS, Şahin S. The toxic effect of cypermethrin, amitraz and combinations of cypermethrin-amitraz in rats. Environ Sci Pollut Res Int 2016;23:5232–42. doi: 10.1007/s11356-015-5720-z10.1007/s11356-015-5720-z26561326Search in Google Scholar

80. Takahashi M, Komada M, Miyazawa K, Goto S, Ikeda Y. Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus. Toxicol Lett 2018;284:113–9. doi: 10.1016/j.toxlet.2017.12.01010.1016/j.toxlet.2017.12.01029248573Search in Google Scholar

81. Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 2009;89:277–87. doi: 10.1016/j.pneurobio.2009.08.00110.1016/j.pneurobio.2009.08.00119686799Search in Google Scholar

82. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, Walker Z, Turkheimer FE, Brooks DJ. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 2013;38:938-49. doi: 10.1038/npp.2012.25510.1038/npp.2012.255362938223303049Search in Google Scholar

83. Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 2007;25:392–400. doi: 10.1016/j.nbd.2006.10.00810.1016/j.nbd.2006.10.008200124617166727Search in Google Scholar

84. Prasad S, Ravindran J, Aggarwal BB. NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem 2010;336:25–37. doi: 10.1007/s11010-009-0267-210.1007/s11010-009-0267-2314894219823771Search in Google Scholar

85. Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009;1:a000034. doi: 10.1101/cshperspect.a00003410.1101/cshperspect.a000034277361920066092Search in Google Scholar

86. Shih R-H, Wang C-Y, Yang C-M. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 2015;8:77. doi: 10.3389/fnmol.2015.0007710.3389/fnmol.2015.00077468320826733801Search in Google Scholar

87. Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 2012;22:557–66. doi: 10.1016/j.tcb.2012.08.00110.1016/j.tcb.2012.08.00122995730Search in Google Scholar

88. Pacheco FJ, Almaguel FG, Evans W, Rios-Colon L, Filippov V, Leoh LS, Leoh LS, Rook-Arena E, Mediavilla-Varela M, De Leon M, Casiano CA. Docosahexanoic acid antagonizes TNF-α-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features. Inflamm Res 2014;63:859–71. doi: 10.1007/s00011-014-0760-210.1007/s00011-014-0760-2420510825095742Search in Google Scholar

89. Fedeli D, Montani M, Carloni M, Nasuti C, Amici A, Gabbianelli R. Leukocyte Nurr1 as peripheral biomarker of early-life environmental exposure to permethrin insecticide. Biomarkers 2012; 17 : 604–9. doi : 10.3109/1354750X.2012.70664110.3109/1354750X.2012.70664122804098Search in Google Scholar

90. Tiwari MN, Singh AK, Agrawal S, Gupta SP, Jyoti A, Shanker R, Prakash O, Singh MP. Cypermethrin alters the expression profile of mRNAs in the adult rat striatum: a putative mechanism of postnatal pre-exposure followed by adulthood re-exposure-enhanced neurodegeneration. Neurotox Res 2012;22:321–34. doi: 10.1007/s12640-012-9317-810.1007/s12640-012-9317-822528246Search in Google Scholar

91. Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 2016;27:105–17. doi: 10.1016/j.tem.2015.12.00110.1016/j.tem.2015.12.00126754340Search in Google Scholar

92. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013;8:2003–14. doi: 10.3969/j.issn.1673-5374.2013.21.009Search in Google Scholar

93. de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 2010;51:391–405. doi: 10.1002/em.2057510.1002/em.2057520544881Search in Google Scholar

94. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Therap 2017;23:5–22. doi: 10.1111/cns.1265510.1111/cns.12655649270327873462Search in Google Scholar

95. Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, Nihira T, Kobayashi T, Ohyama M, Sato S, Takanashi M, Funayama M, Hirayama A, Soga T, Hishiki T, Suematsu M, Yagi T, Ito D, Kosakai A, Hayashi K, Shouji M, Nakanishi A, Suzuki N, Mizuno Y, Mizushima N, Amagai M, Uchiyama Y, Mochizuki H, Hattori N, Okano H. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 2012;5:35. doi: 10.1186/1756-6606-5-3510.1186/1756-6606-5-35354686623039195Search in Google Scholar

96. Chen X, Li J, Hou J, Xie Z, Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev Proteomics 2010;7:333–45. doi: 10.1586/epr.10.2210.1586/epr.10.2220536306Search in Google Scholar

97. Wang F, Dai A-Y, Tao K, Xiao Q, Huang Z-L, Gao M, Li H, Wang X, Cao WX, Feng WL. Heat shock protein-70 neutralizes apoptosis inducing factor in Bcr/Abl expressing cells. Cell Signal 2015;27:1949–55. doi: 10.1016/j.cellsig.2015.06.00610.1016/j.cellsig.2015.06.00626165468Search in Google Scholar

98. Fontanesi F, Soto IC, Horn D, Barrientos A. Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 2006;291:C1129–47. doi: 10.1152/ajpcell.00233.200610.1152/ajpcell.00233.200616760263Search in Google Scholar

99. In S, Hong C-W, Choi B, Jang B-G, Kim M-J. Inhibition of mitochondrial clearance and Cu/Zn-SOD activity enhance 6-hydroxydopamine-induced neuronal apoptosis. Mol Neurobiol 2016;53:777–91. doi: 10.1007/s12035-014-9087-910.1007/s12035-014-9087-925631711Search in Google Scholar

100. Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MS, Shankar S. Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 2012;37:358–69. doi: 10.1007/s11064-011-0619-710.1007/s11064-011-0619-721971758Search in Google Scholar

101. Lee W, Choi K-S, Riddell J, Ip C, Ghosh D, Park J-H, Park J-M. Human peroxiredoxin 1 and 2 are not duplicate proteins. The unique presence of Cys83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem 2007;282:22011–22. doi: 10.1074/jbc.M61033020010.1074/jbc.M61033020017519234Search in Google Scholar

102. Pennington K, Peng J, Hung C-C, Banks RE, Robinson PA. Differential effects of wild-type and A53T mutant isoform of alpha-synuclein on the mitochondrial proteome of differentiated SH-SY5Y cells. J Proteome Res 2010;9:2390–401. doi: 10.1021/pr901102d10.1021/pr901102d20334438Search in Google Scholar

103. Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O, Singh MP. Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson’s disease. Biochim Biophys Acta 2013;1832:1227–40. doi: 10.1016/j.bbadis.2013.03.01910.1016/j.bbadis.2013.03.01923562983Search in Google Scholar

104. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016;1863:2977–92. doi: 10.1016/j.bbamcr.2016.09.01210.1016/j.bbamcr.2016.09.01227646922Search in Google Scholar

105. Hennequin C, Azria D, Riou O, Castan F, Coelho M, Nguyen T, Peignaux K, Lemanski C, Lagrange J-L, Kirova Y, Lartigau E, Belkacemi Y, Bourgier C, Noel G, Clippe S, Mornex F, Kramar A, Pèlegrin A, Ozsahin M. Abstract P3-12-18: Radiation-induced CD8 T-lymphocyte apoptosis as a predictor of late toxicity after radiotherapy: Results of the prospective multicenter French trial. Cancer Res 2016;76(4 Suppl):P3-12–18. doi: 10.1158/1538-7445.SABCS15-P3-12-1810.1158/1538-7445.SABCS15-P3-12-18Search in Google Scholar

106. Olcina M, Leszczynska K, Senra J, Isa N, Harada H, Hammond E. H3K9me3 facilitates hypoxia-induced p53-dependent apoptosis through repression of APAK. Oncogene 2016;35:793. doi: 10.1038/onc.2015.13410.1038/onc.2015.134475325525961932Search in Google Scholar

107. Liu Y, Zeng X, Hui Y, Zhu C, Wu J, Taylor DH, Ji J, Fan W, Huang Z, Hu J. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease. Neuropharmacology 2015;91:87–96. doi: 10.1016/j.neuropharm.2014.11.02810.1016/j.neuropharm.2014.11.02825486621Search in Google Scholar

108. Wang Y, Zhen Y, Wu X, Jiang Q, Li X, Chen Z, Zhang G, Dong L. Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice. Phytomedicine 2015;22:379–84. doi: 10.1016/j.phymed.2015.01.00910.1016/j.phymed.2015.01.00925837275Search in Google Scholar

109. Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, ten Hacken E, Bertilaccio MT, Antonini E, Neri A, Ponzoni M, Marcatti M, Richardson PG, Carrasco R, Kimmelman AC, Wong KK, Caligaris-Cappio F, Blandino G, Kuehl WM, Anderson KC, Tonon G. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nature Med 2014;20:599–606. doi: 10.1038/nm.356210.1038/nm.3562405766024813251Search in Google Scholar

110. Eum K-H, Lee M. Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem 2011;348:61–8. doi: 10.1007/s11010-010-0638-810.1007/s11010-010-0638-821069434Search in Google Scholar

111. Fei Q, McCormack AL, Di Monte DA, Ethell DW. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J Biol Chem 2008;283:3357–64. doi: 10.1074/jbc.M70845120010.1074/jbc.M70845120018056701Search in Google Scholar

112. Hsu S-S, Jan C-R, Liang W-Z. The investigation of the pyrethroid insecticide lambda-cyhalothrin (LCT)-affected Ca2+ homeostasis and-activated Ca2+-associated mitochondrial apoptotic pathway in normal human astrocytes: The evaluation of protective effects of BAPTA-AM (a selective Ca2+ chelator). Neurotoxicology 2018;69:97–107. doi: 10.1016/j.neuro.2018.09.00910.1016/j.neuro.2018.09.00930292652Search in Google Scholar

113. Park JH, Ko J, Hwang J, Koh HC. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells. Neurotoxicology 2015;51:145–57. doi: 10.1016/j.neuro.2015.10.00810.1016/j.neuro.2015.10.00826598294Search in Google Scholar

114. El-Demerdash FM. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem Toxicol 2011;49:1346–52. doi: 10.1016/j.fct.2011.03.01810.1016/j.fct.2011.03.01821419823Search in Google Scholar

115. Thornton C, Hagberg H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta 2015;451:35–8. doi: 10.1016/j.cca.2015.01.02610.1016/j.cca.2015.01.026466143425661091Search in Google Scholar

116. Martinez MM, Reif RD, Pappas D. Detection of apoptosis: A review of conventional and novel techniques. Anal Methods 2010;2:996–1004. doi: 10.1039/C0AY00247J10.1039/c0ay00247jSearch in Google Scholar

117. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011;30:87. doi: 10.1186/1756-9966-30-8710.1186/1756-9966-30-87319754121943236Search in Google Scholar

118. Li GY, Xie P, Li HY, Hao L, Xiong Q, Qiu T. Involment of p53, Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis. Environ Toxicol 2011;26:111–7. doi: https://doi.org/10.1002/tox.2053210.1002/tox.2053219760617Search in Google Scholar

119. Tung WH, Lee IT, Hsieh HL, Yang CM. EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-κB in rat brain astrocytes. J Cell Physiol 2010;224:376–86. doi: 10.1002/jcp.2213310.1002/jcp.2213320333648Search in Google Scholar

120. Kumagai T, Usami H, Matsukawa N, Nakashima F, Chikazawa M, Shibata T, Noguchi N, Uchida K. Functional interaction between cyclooxygenase-2 and p53 in response to an endogenous electrophile. Redox Biol 2015;4:74–86. doi: 10.1016/j.redox.2014.11.01110.1016/j.redox.2014.11.011430985225506925Search in Google Scholar

121. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 2010;1802:396–405. doi: 10.1016/j.bbadis.2009.12.00910.1016/j.bbadis.2009.12.00920079433Search in Google Scholar

122. Ray A, Sehgal N, Karunakaran S, Rangarajan G, Ravindranath V. MPTP activates ASK1-p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in parkinsonism mouse model. Free Rad Biol Med 2015;87:312–25. doi: 10.1016/j.freeradbiomed.2015.06.04110.1016/j.freeradbiomed.2015.06.04126164633Search in Google Scholar

123. Ki Y-W, Park JH, Lee JE, Shin IC, Koh HC. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol Lett 2013;218:235–45. doi: 10.1016/j.toxlet.2013.02.00310.1016/j.toxlet.2013.02.00323416140Search in Google Scholar

124. Salminen A, Kaarniranta K. Genetics vs. entropy: longevity factors suppress the NF-κB-driven entropic aging process. Ageing Res Rev 2010;9:298–314. doi: 1016/j.arr.2009.11.00110.1016/j.arr.2009.11.00119903538Search in Google Scholar

125. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011;32:234–46. doi: 10.1016/j.mam.2011.10.00610.1016/j.mam.2011.10.00622020111Search in Google Scholar

126. Zhao X, Wang R, Xiong J, Yan D, Li A, Wang S, Xu J, Zhou J. JWA antagonizes paraquat-induced neurotoxicity via activation of Nrf2. Toxicol Lett 2017;277:32–40. doi: 10.1016/j.toxlet.2017.04.01110.1016/j.toxlet.2017.04.01128428137Search in Google Scholar

127. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 2017;9:41–56. doi: 10.1007/s12551-016-0244-410.1007/s12551-016-0244-4542579928510041Search in Google Scholar

128. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011;16:123–40. doi: 10.1111/j.1365-2443.2010.01473.x10.1111/j.1365-2443.2010.01473.x21251164Search in Google Scholar

129. Ai B, Liu Y, Shi N. The effects of deltamethrin on HO activity and HO-1 protein expression in rat brain. Acta Universitatis Medicinae Tongji 2000;29:236–8.Search in Google Scholar

130. Corona JC, de Souza SC, Duchen MR. PPARγ activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Exp Neurol 2014;253:16–27. doi: 10.1016/j.expneurol.2013.12.01210.1016/j.expneurol.2013.12.01224374061Search in Google Scholar

131. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 2009;29:954–63. doi: 10.1111/j.1460-9568.2009.06657.x10.1111/j.1460-9568.2009.06657.x19245367Search in Google Scholar

132. Lee EY, Lee JE, Park JH, Shin IC, Koh HC. Rosiglitazone, a PPAR-γ agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett 2012;213:332–44. doi: 10.1016/j.toxlet.2012.07.01610.1016/j.toxlet.2012.07.01622842585Search in Google Scholar

133. Martin HL, Mounsey RB, Mustafa S, Sathe K, Teismann P. Pharmacological manipulation of peroxisome proliferator-activated receptor γ (PPARγ) reveals a role for anti-oxidant protection in a model of Parkinson’s disease. Exp Neurol 2012;235:528–38. doi: 10.1016/j.expneurol.2012.02.01710.1016/j.expneurol.2012.02.017335085722417924Search in Google Scholar

134. Yang J, Wu L-J, Tashino S-I, Onodera S, Ikejima T. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res 2008;42:492–504. doi: 10.1080/1071576080211279110.1080/1071576080211279118484413Search in Google Scholar

135. Srivastava A, Kumar V, Pandey A, Jahan S, Kumar D, Rajpurohit C, Singh S, Khanna VK, Pant AB. Adoptive autophagy activation: a much-needed remedy against chemical induced neurotoxicity/developmental neurotoxicity. Mol Neurobiol 2017;54:1797–807. doi: 10.1007/s12035-016-9778-510.1007/s12035-016-9778-526887381Search in Google Scholar

136. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 2011;19:163–74. doi: 10.1159/00032851610.1159/000328516369981521778691Search in Google Scholar

137. Pan T, Kondo S, Le W, Jankovic J. The role of autophagylysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 2008;131:1969–78. doi: 10.1093/brain/awm31810.1093/brain/awm31818187492Search in Google Scholar

138. Giordano S, Darley-Usmar V, Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2014;2:82–90. doi: 10.1016/j.redox.2013.12.01310.1016/j.redox.2013.12.013390926624494187Search in Google Scholar

139. Hou Y-S, Guan J-J, Xu H-D, Wu F, Sheng R, Qin Z-H. Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation. Mol Cell Biol 2015;35:2740–51. doi: 10.1128/MCB.00285-1510.1128/MCB.00285-15450832526031332Search in Google Scholar

140. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2014;112:24–49. doi: 10.1016/j.pneurobio.2013.10.00410.1016/j.pneurobio.2013.10.00424211851Search in Google Scholar

141. Wu F, Xu HD, Guan JJ, Hou YS, Gu JH, Zhen XC, Qin Z. Rotenone impairs autophagic flux and lysosomal functions in Parkinson’s disease. Neuroscience. 2015;284:900-11. doi: 10.1016/j.neuroscience.2014.11.00410.1016/j.neuroscience.2014.11.00425446361Search in Google Scholar

142. Wills J, Credle J, Oaks AW, Duka V, Lee J-H, Jones J, et al. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PloS One 2012;7(1):e30745. doi: 10.1371/journal.pone.003074510.1371/journal.pone.0030745326463222292029Search in Google Scholar

143. Bordoni L, Nasuti C, Mirto M, Caradonna F, Gabbianelli R. Intergenerational effect of early life exposure to permethrin: Changes in global DNA methylation and in Nurr1 gene expression. Toxics 2015;3:451–61. doi: 10.3390/toxics304045110.3390/toxics3040451560664529051472Search in Google Scholar

144. Decressac M, Volakakis N, Björklund A, Perlmann T. NURR1 in Parkinson disease-from pathogenesis to therapeutic potential. Nat Rev Neurol 2013;9:629. doi: 10.1038/nrneurol.2013.20910.1038/nrneurol.2013.20924126627Search in Google Scholar

145. Le W, Pan T, Huang M, Xu P, Xie W, Zhu W, Zhang X, Deng H, Jankovic J. Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 2008;273:29–33. doi: 10.1016/j.jns.2008.06.00710.1016/j.jns.2008.06.007257230218684475Search in Google Scholar

146. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009;137:47–59. doi: 10.1016/j.cell.2009.01.03810.1016/j.cell.2009.01.038275427919345186Search in Google Scholar

147. Devine MJ. Proteasomal inhibition as a treatment strategy for Parkinson’s disease: the impact of α-synuclein on Nurr1. J Neurosci 2012;32:16071–3. doi: 10.1523/JNEUROSCI.4224-12.201210.1523/JNEUROSCI.4224-12.2012679401223152591Search in Google Scholar

148. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Björklund A. α-synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Translat Med 2012;4(163):163ra56– ra56. doi: 10.1126/scitranslmed.300467610.1126/scitranslmed.300467623220632Search in Google Scholar

149. Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-based therapies for Parkinson’s disease. CNS Neurosci Therap 2016;22:351–9. doi: 10.1111/cns.1253610.1111/cns.12536483361127012974Search in Google Scholar

150. Bordoni L, Nasuti C, Mirto M, Caradonna F, Gabbianelli R. Intergenerational effect of early life exposure to permethrin: changes in global DNA methylation and in Nurr1 gene expression. Toxic 2015;3:451–61. doi: 10.3390/toxics304045110.3390/toxics3040451560664529051472Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other