Antioxidants and selenocompounds inhibit 3,5-dimethylaminophenol toxicity to human urothelial cells

Open access


Exposure to alkyl anilines may lead to bladder cancer, which is the second most frequent cancer of the urogenital tract. 3,5-dimethylaniline is highly used in industry. Studies on its primary metabolite 3,5-dimethylaminophenol (3,5-DMAP) showed that this compound causes oxidative stress, changes antioxidant enzyme activities, and leads to death of different mammalian cells. However, there is no in vitro study to show the direct effects of 3,5-DMAP on human bladder and urothelial cells. Selenocompounds are suggested to decrease oxidative stress caused by some chemicals, and selenium supplementation was shown to reduce the risk of bladder cancer. The main aim of this study was to investigate whether selenocompounds organic selenomethionine (SM, 10 µmol/L) or inorganic sodium selenite (SS, 30 nmol/L) could reduce oxidative stress, DNA damage, and apoptosis in UROtsa cells exposed to 3,5-DMAP. 3,5-DMAP caused a dose-dependent increase in intracellular generation of reactive oxygen species, and its dose of 50 µmol/L caused lipid peroxidation, protein oxidation, and changes in antioxidant enzyme activities in different cellular fractions. The comet assay also showed single-strand DNA breaks induced by the 3,5-DMAP dose of 50 µmol/L, but no changes in double-strand DNA breaks. Apoptosis was also triggered. Both selenocompounds provided partial protection against the cellular toxicity of 3,5-DMAP. Low selenium status along with exposure to alkyl anilines can be a major factor in the development of bladder cancer. More mechanistic studies are needed to specify the role of selenium in bladder cancer.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. World Cancer Research Fund - American Institute of Cancer Research. Bladder cancer statistics [displayed 18 January 2019]. Available at

  • 2. Reszka E. Selenoproteins in bladder cancer. Clin Chim Acta 2012;413:847-54. doi: 10.1016/j.cca.2012.01.041

  • 3. Wu JT Han BM Yu SQ Wang HP Xia SJ. Androgen receptor is a potential therapeutic target for bladder cancer. Urology 2010;75:820-7. doi: 10.1016/j.urology.2009.10.041

  • 4. Ferlay J Bray F Sankila R Parkin DM. EUCAN: Cancer Incidence Mortality and Prevalence in the European Union 1998 version 5.0. IARC Cancer Base No. 4. Lyon: IARC Press; 1999.

  • 5. Malats N Real FX. Epidemiology of bladder cancer. Hematol Oncol Clin North Am 2015;29:177-89. doi: 10.1016/j.hoc.2014.10.001

  • 6. Zeegers MPA Kellen E Buntinx F van den Brandt PA. The association between smoking beverage consumption diet and bladder cancer: a systematic literature review. World J Urol 2004;21:392-401. doi: 10.1007/s00345-003-0382-8

  • 7. Carreón T Hein MJ Hanley KW Viet SM Ruder AM. Bladder cancer incidence among workers exposed to o-toluidine aniline and nitrobenzene at a rubber chemical manufacturing plant. Occup Environ Med 2014;71:175-82. doi: 10.1136/oemed-2013-101873

  • 8. Government of Canada Health and Welfare Canada Environment Canada. Priority Substances List Assessment Report – 35-Dimethylaniline 1993 [displayed 18 January 2019]. Available at

  • 9. Vinceti M Filippini T Del Giovane C Dennert G Zwahlen M Brinkman M Zeegers MP Horneber M D’Amico R Crespi CM. Selenium for preventing cancer. Cochrane Database Syst Rev 2018;1:CD005195. doi:10.1002/14651858.CD005195.pub4.

  • 10. Castelao JE Yuan JM Skipper PL Tannenbaum SR Gago-Dominguez M Crowder JS Ross RK Yu MC. Gender- and smoking-related bladder cancer risk. J Natl Cancer Inst 2001;93:538-45. doi: 10.1093/jnci/93.7.538

  • 11. Skipper PL Trudel LJ Kensler TW Groopman JD Egner PA Liberman RG Wogan GN Tannenbaum SR. DNA adduct formation by 26-dimethyl- 35-dimethyl and 3-ethylaniline in vivo in mice. Chem Res Toxicol 2004;19:1086-90. doi: 10.1021/tx060082q

  • 12. Chao MW Erkekoglu P Tseng CY Ye W Trudel LJ Skipper PL Tannenbaum SR Wogan GN. Intracellular generation of ROS by 35-dimethylaminophenol: persistence cellular response and impact of molecular toxicity. Toxicol Sci 2014;141:300-13. doi: 10.1093/toxsci/kfu127

  • 13. Chao MW Erkekoglu P Tseng CY Ye W Trudel LJ Skipper PL Tannenbaum SR Wogan GN. Protective effects of ascorbic acid against the genetic and epigenetic alterations induced by 35-dimethylaminophenol in AA8 cells. J Appl Toxicol 2015;35:466-77. doi: 10.1002/jat.3046

  • 14. Erkekoglu P Chao MW Ye W Ge J Trudel LJ Skipper PL Kocer-Gumusel B Engelward BP Wogan GN Tannenbaum S R. Cytoplasmic and nuclear toxicity of 35-dimethylaminophenol and potential protection by selenocompounds. Food Chem Toxicol 2014;72:98-110. doi: 10.1016/j.fct.2014.06.031

  • 15. Martindale JL Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002;192:1-15. doi: 10.1002/jcp.10119

  • 16. Al-Zalabani AH Stewart KF Wesselius A Schols AM Zeegers MP. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. Eur J Epidemiol 2016;31:811-51. doi: 10.1007/s10654-016-0138-6

  • 17. American Cancer Society. Key Statistics for Bladder Cancer [displayed 18 January 2019]. Available at

  • 18. Flohé L Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984;105:114-21. doi: 10.1016/S0076-6879(84)05015-1

  • 19. Arnér ES Zhong L Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol 1999;300:226-39. doi: 10.1016/S0076-6879(99)00129-9

  • 20. Erkekoglu P Rachidi W De Rosa V Giray B Favier A Hincal F. Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells. Free Radic Biol Med 2010;49:559-66. doi: 10.1016/j.freeradbiomed.2010.04.038

  • 21. Erkekoglu P Rachidi W Yuzugullu OG Giray B Favier A Ozturk M Hincal F. Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono(2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium. Toxicol Appl Pharmacol 2010;248:52-62. doi: 10.1016/j.taap.2010.07.016

  • 22. Bhamre S Whitin JC Cohen HJ. Selenomethionine does not affect PSA secretion independent of its effect on LNCaP cell growth. Prostate 2003;54:315-21. doi: 10.1002/pros.10184

  • 23. Pourkhalili N Hosseini A Nili-Ahmadabadi A Rahimifard M Navaei-Nigjeh M Hassani S Baeeri M Abdollahi M. Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress. Toxicol Mech Methods. 2012;22:476-82. doi: 10.3109/15376516.2012.673093.

  • 24. Mansur DB Hao H Gladyshev VN Korotkov KV Hu Y Moustafa ME El-Saadani MA Carlson BA Hatfield DL Diamond AM. Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cell lines. Biochem Pharmacol 2000;60:489-97. PubMed PMID: 10874123.

  • 25. Fontenelle LS Feitosa MM Silva Morais JB Soares Severo J Coelho de Freitas TE Batista Beserra J Henriques GS do Nascimento Marreiro D. The role of selenium in insulin resistance. Braz J Pharm Sci 2018;54:e00139. doi:

  • 26. Habig WH Pabst MJ Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974;249:7130-9. PMID: 4436300

  • 27. Richard MJ Portal B Meo J Coudray C Hadjian A Favier A. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem 1992;38:704-9. PMID: 1582024

  • 28. Davies MJ. Protein oxidation and peroxidation. Biochem J 2016;473:805-25. doi: 10.1042/BJ20151227

  • 29. Krieg RC Dong Y Schwamborn K Knuechel R. Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE. J Biochem Biophys Methods 2005;65:13-9. doi: 10.1016/j.jbbm.2005.08.005

  • 30. Erkekoglu P. Protection studies by antioxidants using single cell gel electrophoresis (comet assay) In: Magdeldin S editor. Gel electrophoresis - advanced techniques. Rijeka: InTech; 2012. p. 413-46.

  • 31. Wood DK Weingeist DM Bhatia SN Engelward BP. Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci USA 2010;107:10008-13. doi: 10.1073/pnas.1004056107

  • 32. Dickinson DA Forman HJ. Cellular glutathione and thiols metabolism. Biochem Pharmacol 2002;64:1019-26. doi: 10.1016/S0006-2952(02)01172-3

  • 33. Haribabu A Reddy VS Pallavi Ch Bitla AR Sachan A Pullaiah P Suresh V Rao PV Suchitra MM. Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine 2013;44:152-7. doi: 10.1007/s12020-012-9849-y

  • 34. Gebicki S Gebicki JM. Crosslinking of DNA and proteins induced by protein hydroperoxides. Biochem J 1999;338:629-36. PMCID: PMC1220096

  • 35. Esterbauer H Eckl P Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res 1990;238:223-33. doi: 10.1016/0165-1110(90)90014-3

  • 36. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutation Res 1999;424:83-95. doi: 10.1016/S0027-5107(99)00010-X

  • 37. Ballatori N Krance SM Notenboom S Shi S Tieu K Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009;390:191-214. doi: 10.1515/BC.2009.033.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1.606

CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 320 32
PDF Downloads 193 193 9