Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate

Open access


In this 28 day-study, we evaluated the effects of herbicide glyphosate administered by gavage to Wistar rats at daily doses equivalent to 0.1 of the acceptable operator exposure level (AOEL), 0.5 of the consumer acceptable daily intake (ADI), 1.75 (corresponding to the chronic population-adjusted dose, cPAD), and 10 mg kg−1 body weight (bw) (corresponding to 100 times the AOEL). At the end of each treatment, the body and liver weights were measured and compared with their baseline values. DNA damage in leukocytes and liver tissue was estimated with the alkaline comet assay. Oxidative stress was evaluated using a battery of endpoints to establish lipid peroxidation via thiobarbituric reactive substances (TBARS) level, level of reactive oxygen species (ROS), glutathione (GSH) level, and the activity of glutathione peroxidase (GSH-Px). Total cholinesterase activity and the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were also measured. The exposed animals gained less weight than control. Treatment resulted in significantly higher primary DNA damage in the liver cells and leukocytes. Glyphosate exposure significantly lowered TBARS in the liver of the AOEL, ADI, and cPAD groups, and in plasma in the AOEL and cPAD group. AChE was inhibited with all treatments, but the AOEL and ADI groups significantly differed from control. Total ChE and plasma/liver ROS/GSH levels did not significantly differ from control, except for the 35 % decrease in ChE in the AOEL and ADI groups and a significant drop in liver GSH in the cPAD and 100xAOEL groups. AOEL and ADI blood GSH-Px activity dropped significantly, but in the liver it significantly increased in the ADI, cPAD, and 100xAOEL groups vs. control. All these findings show that even exposure to low glyphosate levels can have serious adverse effects and points to a need to change the approach to risk assessment of low-level chronic/sub-chronic glyphosate exposure, where oxidative stress is not necessarily related to the genetic damage and AChE inhibition.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Duke SO Powles SB. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 2008;64:319-25. doi: 10.1002/ps.1518

  • 2. Samsel A Seneff S. Glyphosate pathways to modern diseases III: Manganese neurological diseases and associated pathologies. Surg Neurol Int 2015;6:45. doi: 10.4103/2152-7806.153876

  • 3. De María N Becerril JM García-Plazaola JI Hernández A De Felipe MR Fernández-Pascual M. New insights on glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. J Agr Food Chem 2006;54:2621-8. doi: 10.1021/jf058166c

  • 4. Richards TA Dacks JB Campbell SA Blanchard JL Foster PG McLeod R Roberts CW. Evolutionary origins of the eukaryotic shikimate pathway: Gene fusions horizontal gene transfer and endosymbiotic replacements. Eukaryot Cell 2006;5:1517-31. doi: 10.1128/EC.00106-06

  • 5. US Environmental Protection Agency (US EPA). Reregistration Eligibility Decision (RED) Glyphosate. Prevention Pesticides and Toxics Substances 1993;EPA-738-R-93-014 EPA-738-F-93-011 [displayed 18 February 2018]. Available at https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-417300_1-Sep-93.pdf

  • 6. Street RW Serdy FS Conkin RA Kimball SL. Acute toxicity studies submitted in support of the registration of Roundup Herbicide. Roundup EPA Registration No. 524-308. Glyphosate Technical. R.D. No. 263 1979.

  • 7. German Federal Agency CPFS. Monograph on Glyphosate by the German Federal Agency for Consumer Protection and Food Safety. Annex B-5: Toxicology and metabolism 1998. [displayed 18 February 2018]. Available at https://www.scribd.com/document/57155616/VOLUME3-1-GLYPHOSAT-05

  • 8. European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J 2015;13:4302. doi: 10.2903/j.efsa.2015.4302

  • 9. Horth H Blackmore K. Survey of glyphosate and AMPA in groundwaters and surface waters in Europe. Report by WRc plc Swindon Wiltshire United Kingdom No: UC8073 2. 2009 [displayed 18 February 2018]. Available at http://www.egeis.org/cd-info/WRC-report-UC8073-02-December-2009-Glyphosate-monitoring-in-water.pdf

  • 10. McQueen H Callan AC Hinwood AL. Estimating maternal and prenatal exposure to glyphosate in the community setting. Int J Hyg Envir Heal 2012;215:570-6. doi: 10.1016/j.ijheh.2011.12.002

  • 11. US Environmental Protection Agency (US EPA). Glyphosate: Chronic Dietary Exposure Assessment for the Section 3 Registration Action. PC Code 103601 DP Number 321666 2006 [displayed 18 February 2018]. Available at https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/103601/103601-2006-05-08a.pdf

  • 12. Séralini G-E Clair E Mesnage R Gress S Defarge N Malatesta M Hennequin D de Vendômois JS. Republished study: longterm toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Environ Sci Eur 2014;26:14. doi: 10.1186/s12302-014-0014-5

  • 13. World Health Organization (WHO) International Agency for Research Cancer (IARC). Some Organophosphate Insecticides and Herbicides. Glyphosate. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 112 2017 [displayed 18 February 2018]. Available at http://monographs.iarc.fr/ENG/Monographs/vol112/mono112.pdf

  • 14. Guyton KZ Loomis D Grosse Y El Ghissassi F Benbrahim-Tallaa L Guha N Scoccianti C Mattock H Straif K; International Agency for Research on Cancer Monograph Working Group IARC Lyon France. Carcinogenicity of tetrachlorvinphos parathion malathion diazinon and glyphosate. Lancet Oncol 2015;16:490-1. doi: 10.1016/S1470-2045(15)70134-8

  • 15. European Food Safety Authority (EFSA). Peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate. EFSA J 2017;15:4979. doi: 10.2903/j.efsa.2017.4979

  • 16. FAO-WHO. Joint FAO/WHO Meeting on Pesticide Residues (JMPR) [displayed 18 February 2018]. Available at http://www.who.int/foodsafety/areas_work/chemical-risks/jmpr/en/

  • 17. European Commission (EC). Glyphosate 2017 [displayed 18 February 2018] Available at https://ec.europa.eu/food/plant/pesticides/glyphosate_en

  • 18. Williams GM Kroes R Munro IC. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient glyphosate for humans. Regul Toxicol Pharm 2000;31:117-65. doi: 10.1006/rtph.1999.1371

  • 19. Tarazona JV Court-Marques D Tiramani M Reich H Pfeil R Istace F Crivellente F. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Arch Toxicol 2017;91:2723-2743. doi: 10.1007/s00204-017-1962-5.

  • 20. Bababunmi EA Olorunsogo OO Bassir O. The uncoupling effect of N-(phosphonomethyl)glycine on isolated rat liver mitochondria. Biochem Pharmacol 1979;28:925-7. doi: 10.1016/0006-2952(79)90377-0

  • 21. Olorunsogo OO Bababunmi EA Bassir O. Effect of glyphosate on rat liver mitochondria in vivo. B Environ Contam Tox 1979;22:357-64. doi: 10.1007/BF02026955

  • 22. Olorunsogo OO. Modification of the transport of protons and Ca2+ ions across mitochondrial coupling membrane by N-(phosphonomethyl)glycine. Toxicology 1990;61:205-9. doi: 10.1016/0300-483X(90)90021-8

  • 23. Ugarte R. Interaction between glyphosate and mitochondrial succinate dehydrogenase. Comput Theor Chem 2014;1043:54-63. doi: 10.1016/j.comptc.2014.05.018

  • 24. Larsen K Najle R Lifschitz A Virkel G. Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: Glutathione transferase enzyme activities levels of reduced glutathione and lipid peroxidation in liver kidneys and small intestine. Environ Toxicol Phar 2012;34:811-8. doi: 10.1016/j.etap.2012.09.005

  • 25. Banerjee BD Seth V Bhattacharya A Pasha ST Chakraborty AK. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett 1999;107:33-47. doi: 10.1016/S0378-4274(99)00029-6

  • 26. Richard S Moslemi S Sipahutar H Benachour N Seralini GE. Differential effects of glyphosate and Roundup on human placental cells and aromatase. Environ Health Persp 2005;113:716-20. doi: 10.1289/ehp.7728

  • 27. Lushchak OV Kubrak OI Storey JM Storey KB Lushchak VI. Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 2009;76:932-7. doi: 10.1016/j.chemosphere.2009.04.045

  • 28. Modesto KA Martinez CBR. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 2010;78:294-9. doi: 10.1016/j.chemosphere.2009.10.047

  • 29. Modesto KA Martinez CBR. Effects of Roundup Transorb on fish: Hematology antioxidant defenses and acetylcholinesterase activity. Chemosphere 2010;81:781-7. doi: 10.1016/j.chemosphere.2010.07.005

  • 30. Jasper R Locatelli GO Pilati C Locatelli C. Evaluation of biochemical hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup®. Interdiscip Toxicol 2012;5:133-40. doi: 10.2478/v10102-012-0022-5

  • 31. El-Demerdash FM Yousef MI Elagamy EI. Influence of paraquat glyphosate and cadmium on the activity of some serum enzymes and protein electrophoretic behavior (in vitro). J Environ Sci Heal B 2001;36:29-42. doi: 10.1081/PFC-100000914

  • 32. Smith EA Oehme FW. The biological activity of glyphosate to plants and animals: A literature review. Vet Hum Toxicol 1992;34:531-43. PMID: 1287975

  • 33. Dallegrave E Mantese FDG Coelho RS Pereira JD Dalsenter PR Langeloh A. The teratogenic potential of the herbicide glyphosate-Roundup® in Wistar rats. Toxicol Lett 2003;142:45-52. doi: 10.1016/S0378-4274(02)00483-6

  • 34. Benedetti AL Vituri CDL Trentin AG Domingues MAC Alvarez-Silva M. The effects of sub-chronic exposure of Wistar rats to the herbicide Glyphosate-Biocarb®. Toxicol Lett 2004;153:227-32. doi: 10.1016/j.toxlet.2004.04.008

  • 35. Mesnage R Renney G Séralini GE Ward M Antoniou MN. Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide. Sci Rep-UK 2017;7:39328. doi: 10.1038/srep39328

  • 36. Annett R Habibi HR Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 2014;34:458-79. doi: 10.1002/jat.2997

  • 37. Bai SH Ogbourne SM. Glyphosate: environmental contamination toxicity and potential risks to human health via food contamination. Environ Sci Pollut R 2016;23:18988-9001. doi: 10.1007/s11356-016-7425-3

  • 38. Colvin LB Miller JA. Residue and metabolism. The dynamics of accumulation and depletion of orally ingested N-phosphonylmethylglycine-14C. Unpublished report Monsanto Company St Louis MO 1973 [displayed 18 February 2018]. Available at http://www.inchem.org/documents/jmpr/jmpmono/v86pr08.htm???

  • 39. Ridley WP Mirley K. The metabolism of glyphosate in Sprague-Dawley rats. Part I. Excretion and tissue distribution of glyphosate and its metabolites following intravenous and oral administration. Study number 86139 project number mL-86-438 (March 1988) Unpublised report Monsanto Environ Heal Lab St Louis MO. 1988. Subbmited to WHO by Monsanto Int. Services SA Brussel Belgium-in WHO: Pesticide residues in the food 2004 part II Joint FAO/WHO Meeting on pesticide Residues IPCS 2004 [displayed 18 February 2018] Available at https://books.google.hr/books?id=Q8qhjfKFMf4C&pg=PA95&dq=Pesticide+Residues+in+Food+-+2004:+Evaluations+2004,+Toxic

  • 40. Howe RH Chott RC McClanahan RH. Metabolism of glyphosate in Sprague-Dawley rats. Part II: Identification characterization and quantitation of glyphosate and its metabolites after intravenous and oral administration. Unpublished report no. MSL-7206 RD No. 877 1988 submitted to U.S. Environmental Protection Agency by Monsanto Company. Reregistration Eligibility Decision (RED) Glyphosate; EPA-738-F-93-011; U.S. Environmental Protection Agency Office of Prevention Pesticides and Toxic Substances Office of Pesticide Programs U.S. Government Printing Office: Washington DC 1993. [displayed 18 February 2018] Available at https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-417300_1-Sep-93.pdf

  • 41. National Toxicology Program (NTP). Technical Report on Toxicity Studies of Glyphosate (CAS No. 1071-83-6) Administered in Dosed Feed to F344/N rats and B6C3F1 Mice. NIH Publ 92-3135. 1992 [displayed 18 February 2018]. Available at https://ntp.niehs.nih.gov/ntp/htdocs/st_rpts/tox016.pdf

  • 42. Brewster DW Warren J Hopkins II WE. Metabolism of glyphosate in Sprague-Dawley rats: tissue distribution identification and quantitation of glyphosate-derived materials following a single oral dose. Fund Appl Toxicol 1991;17:43-51. doi: 10.1016/0272-0590(91)90237-X

  • 43. Anadón A Martínez-Larrañaga MR Martínez MA Castellano VJ Martínez M Martin MT Nozal MJ Bernal JL. Toxicokinetics of glyphosate and its metabolite aminomethyl phosphonic acid in rats. Toxicol Lett 2009;190:91-5. doi: 10.1016/j.toxlet.2009.07.008

  • 44. California Environmental Protection Agency Department of Pesticide Regulation Human Health Assessment Branch. Summary of Toxicology Data Glyphosate 2015 [displayed 18 February 2018]. Available at http://www.cdpr.ca.gov/docs/risk/toxsums/pdfs/1855.pdf

  • 45. US Environmental Protection Agency (US EPA). Glyphosate Issue Paper: Evaluation of Carcinogenic Potential 2016 [displayed 18 February 2018] Available at https://www.epa.gov/sites/production/files/2016-09/documents/glyphosate_issue_paper_evaluation_of_carcincogenic_potential.pdf

  • 46. Kašuba V Milić M Rozgaj R Kopjar N mLadinić M Žunec S Lucić Vrdoljak A Pavičić I Čermak AM Pizent A Tariba Lovaković B Želježić D. Effects of low doses of glyphosate on DNA damage cell proliferation and oxidative stress in the HepG2 cell line. Environ Sci Pollut R 2017;24:19267-81. doi: 10.1007/s11356-017-9438-y

  • 47. King JJ Wagner RS. Toxic effects of the herbicide Roundup® regular on pacific northwestern amphibians. Northwest Nat 2010;91:318-24. doi: 10.1898/NWN09-25.1

  • 48. Curwin BD Hein MJ Sanderson WT Striley C Heederik D Kromhout H Reynolds SJ Alavanja MC. Urinary pesticide concentrations among children mothers and fathers living in farm and non-farm households in Iowa. Ann Occup Hyg 2007;51:53-65. doi: 10.1093/annhyg/mel062

  • 49. Niemann L Sieke C Pfeil R Solecki R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbrauch Lebensm 2015;10:3-12. doi: 10.1007/s00003-014-0927-3

  • 50. Acquavella JF Alexander BH Mandel JS Gustin C Baker B Chapman P. Glyphosate biomonitoring for farmers and their families: Results from the farm family exposure study. Environ Health Persp 2004;112:321-6. doi: 10.1289/ehp.6667

  • 51. de Araujo JSA Delgado IF Paumgartten FJR. Glyphosate and adverse pregnancy outcomes a systematic review of observational studies. BMC Public Health 2016;16:472. doi: 10.1186/s12889-016-3153-3

  • 52. Aris A Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec Canada. Reprod Toxicol 2011;31:528-33. doi: 10.1016/j.reprotox.2011.02.004

  • 53. Al-Rajab AJ Schiavon M. Degradation of 14C-glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils. J Environ Sci-China 2010;22:1374-80. doi: 10.1016/S1001-0742(09)60264-3

  • 54. European Food Safety Authority (EFSA). Endorsed for Public Consultation Draft Scientific Opinion. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment . 2011 [displayed 18 February 2018]. Available at https://www.efsa.europa.eu/sites/default/files/consultation/scaf110420%2C0.pdf

  • 55. Pant K Springer S Bruce S Lawlor T Hewitt M Asrdema MJ. Vehicle and positive control values fromthe in vivo rodent comet assay and biomonitoring studies using human lymphocytes: historical database and influence of technical aspects. Environ Mol Mutagen 2014;55:633-42. doi: 10.1002/em.21881

  • 56. Peraica M Ljubanović D Domijan A-M. The effect of a single dose of fumonisin B1 on rat kidney. Croat Chem Acta 2008;81:119-24.

  • 57. Recio L Hobbs C Caspary W Witt KL. Dose-response assessment of four genotoxic chemicals in a combined mouse and rat micronucleus (MN) and Comet assay protocol. J Toxicol Sci 2010;35:149-62. PMCID: PMC3520611

  • 58. Smith CC Adkins DJ Martin EA O’Donovan MR. Recommendations for design of the rat comet assay. Mutagenesis 2008;23:233-40. doi: 10.1093/mutage/gen008

  • 59. McNamee JP Bellier P V. Use of a standardized JaCVAM in vivo rat comet assay protocol to assess the genotoxicity of three coded test compounds; ampicillin trihydrate 1 2-dimethylhydrazine dihydrochloride and N-nitrosodimethylamine. Mutat Res Gen Tox En 2015;786-788:158-64. doi: 10.1016/j.mrgentox.2015.02.005

  • 60. Drury JA Nycyk JA Cooke RWI. Comparison of urinary and plasma malondialdehyde in preterm infants. Clin Chim Acta1997;263:177-85. doi: 10.1016/S0009-8981(97)00051-X

  • 61. Kamencic H Lyon A Paterson PG Juurlink BHJ. Monochlorobimane fluorometric method to measure tissue glutathione. Anal Biochem 2000;286:35-7. doi: 10.1006/abio.2000.4765

  • 62. Belsten J Wright A. European Community: FLAIR common assay for whole-blood glutathione peroxidase (GSH-Px); results of an inter-laboratory trial. Eur J Clin Nutr 1995;49:921-7. PMID: 8925794

  • 63. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. doi: 10.1016/0003-2697(76)90527-3

  • 64. Ellman GL Courtney KD Andres V Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95. doi: 10.1016/0006-2952(61)90145-9

  • 65. Moser VC Simmons JE Gennings C. Neurotoxicological interactions of a five-pesticide mixture in preweanling rats. Toxicol Sci 2006;92:235-45. doi: 10.1093/toxsci/kfj189

  • 66. Tang J Hu P Li Y Win-Shwe TT Li C. Ion imbalance is involved in the mechanisms of liver oxidative damage in rats exposed to glyphosate. Front Physiol 2017;8:1-12. doi: 10.3389/fphys.2017.01083

  • 67. El-Shenawy NS. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ Toxicol Pharmacol 2009;28:379-85. doi: 10.1016/j.etap.2009.06.001

  • 68. Çaǧlar S Kolankaya D. The effect of sub-acute and sub-chronic exposure of rats to the glyphosate-based herbicide Roundup. Environ Toxicol Phar 2008;25:57-62. doi: 10.1016/j.etap.2007.08.011

  • 69. Alvarez-Moya C Silva MR Ramírez CV Gallardo DG Sánchez RL Aguirre AC Velasco AF. Comparison of the in vivo and in vitro genotoxicity of glyphosate isopropylamine salt in three different organisms. Genet Mol Biol 2014;37:105-10. PMID: 24688297

  • 70. Mladinić M Berend S Lucić Vrdoljak A Kopjar N Radić B Želježić D. Evaluation of genome damage and its relation to oxidative stress induced by glyphosate in human lymphocytes in vitro. Environ Mol Mutagen 2009;50:800-7. doi: 10.1002/em.20495

  • 71. Mañas F Peralta L Raviolo J Ovando HG Weyers A Ugnia L Cid MG Larripa I Gorla N. Genotoxicity of glyphosate assessed by the comet assay and cytogenetic tests. Environ Toxicol Phar 2009;28:37-41. doi: 10.1016/j.etap.2009.02.001

  • 72. Manas F Peralta L Ugnia L Weyers A Garcia Ovando H Gorla N. Oxidative stress and comet assay in tissues of mice administered glyphosate and AMPA in drinking water for 14 days. BAG – J Basic Appl Genet. 2013;24:67-75 [displayed 18 February 2018] Available at http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-62332013000300007&lng=es.

  • 73. Bolognesi C Bonatti S Degan P Gallerani E Peluso M Rabboni R Roggieri P Abbondandolo A. Genotoxic activity of glyphosate and its technical formulation Roundup. J Agr Food Chem 1997;45:1957-62. doi: 10.1021/jf9606518

  • 74. Peluso M Munnia A Bolognesi C PS. 32P-postlabeling detection of DNA adducts in mice treated with the herbicide Roundup. Env Mol Mutagen 1998;31:55-9. PMID: 9464316

  • 75. Greim H Saltmiras D Mostert V Strupp C. Evaluation of carcinogenic potential of the herbicide glyphosate drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies. Crit Rev Toxicol 2015;45:185-208. doi: 10.3109/10408444.2014.1003423

  • 76. Peixoto F. Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere 2005;61:1115-22. doi: 10.1016/j.chemosphere.2005.03.044

  • 77. Astiz M de Alaniz MJT Marra CA. Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicol Environ Saf 2009;72:2025-32. doi: 10.1016/j.ecoenv.2009.05.001

  • 78. Slaninova A Smutna M Modra H Svobodova Z. A review: oxidative stress in fish induced by pesticides. Neuro Endocrinol Lett 2009;30(Suppl 1):2–12. PMID: 20027135

  • 79. Beuret CJ Zirulnik F Giménez MS. Effect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses. Reprod Toxicol 2005;19:501-4 doi: 10.1016/j.reprotox.2004.09.009

  • 80. Abarikwu SO Akiri OF Durojaiye MA Adenike A. Combined effects of repeated administration of Bretmont Wipeout (glyphosate) and Ultrazin (atrazine) on testosterone oxidative stress and sperm quality of Wistar rats. Toxicol Mech Method 2015;25:70-80. doi: 10.3109/15376516.2014.989349

  • 81. Alp H Pinar N Dokuyucu R Kaplan I Sahan M Senol S Karakus A Yaldiz M. Effects of intralipid and caffeic acid phenyl esther (CAPE) against hepatotoxicity and nephrotoxicity caused by glyphosate isopropylamine (GI). Eur J Inflamm 2016;14:3-9. doi: 10.1177/1721727X16630318

  • 82. Cattaneo R Clasen B Loro VL De Menezes CC Pretto A Baldisserotto B Santi A de Avila LA. Toxicological responses of Cyprinus carpio exposed to a commercial formulation containing glyphosate. Bull Environ Contam Toxicol 2011;87:597-602. doi: 10.1007/s00128-011-0396-7

  • 83. Lajmanovich RC Attademo AM Peltzer PM Junges CM Cabagna MC. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Arch Environ Con Tox 2011;60:681-9. doi: 10.1007/s00244-010-9578-2

  • 84. Glusczak L dos Santos Miron D Crestani M Braga da Fonseca M de Araújo Pedron F Duarte MF Vieira VL. Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 2006;65:237-41. doi: 10.1016/j.ecoenv.2005.07.017

  • 85. Salbego J Pretto A Gioda CR de Menezes CC Lazzari R Radünz Neto J Baldisserotto B Loro VL. Herbicide formulation with glyphosate affects growth acetylcholinesterase activity and metabolic and hematological parameters in Piava (Leporinus obtusidens). Arch Environ Con Tox 2010;58:740-5. doi: 10.1007/s00244-009-9464-y

  • 86. Glusczak L dos Santos Miron D Moraes BS Simões RR Schetinger MR Morsch VM Loro VL. Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Phys C 2007;146:519-24. doi: 10.1016/j.cbpc.2007.06.004

  • 87. Hoshi M Takashima A Noguchi K Murayama M Sato M Kondo S Saitoh Y Ishiguro K Hoshino T Imahori K. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc Natl Acad Sci USA. 1996;93:2719-23. PMCID: PMC39697

  • 88. Kwiatkowska M Paweł J Bukowska B. Glifosat i jego preparaty – toksyczność narażenie zawodowe i środowiskowe [Glyphosate and its formulations-toxicity occupational and environmental exposure in Polish]. Med Pr 2013;64:717-29. doi: 10.13075/mp.5893.2013.0059

  • 89. Larsen KE Lifschitz AL Lanusse CE Virkel GL. The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environ Toxicol Phar 2016;45:41-4. doi: 10.1016/j.etap.2016.05.012

  • 90. Kumar S Khodoun M Kettleson EM McKnight C Reponen T Grinshpun SA Adhikari A. Glyphosate-rich air samples induce IL-33 TSLP and generate IL-13 dependent airway inflammation. Toxicology 2014;325:42-51. doi: 10.1016/j.tox.2014.08.008

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1.606

CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1285 559 36
PDF Downloads 864 365 23