Antimycobacterial potential of the juniper berry essential oil in tap water

Open access

Abstract

Mycobacterium avium complex-related diseases are often associated with poorly maintained hot water systems. This calls for the development of new control strategies. The aim of this study was to investigate the activity of essential oils (EOs) from the Mediterranean plants, common juniper, immortelle, sage, lavandin, laurel, and white cedar against Mycobacterium avium ssp. avium, Mycobacterium intracellulare, and Mycobacterium gordonae in culturing broth and freshwater as their most common habitat. To do that, we developed a new method of water microdilution to determine their minimal effective concentrations (MEC). The most active EO was the one from the common juniper with the MEC of 1.6 mg mL-1. Gas chromatography / mass spectrometry the juniper EO identified monoterpenes (70.54 %) and sesquiterpenes (25.9 %) as dominant component groups. The main monoterpene hydrocarbons were α-pinene, sabinene, and β-pinene. The juniper EO significantly reduced the cell viability of M. intracellulare and M. gordonae at MEC, and of M. avium at 2xMEC. Microscopic analysis confirmed its inhibitory effect by revealing significant morphological changes in the cell membrane and cytoplasm of all three bacteria. The mode of action of the juniper EO on the cell membrane was confirmed by a marked leakage of intracellular material. Juniper EO has a great practical potential as a complementary or alternative water disinfectant in hot water systems such as baths, swimming pools, spa pools, hot tubs, or even foot baths/whirlpools.

1. LeDantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V. Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl Environ Microbiol 2002;68:5318-25. PMCID: PMC129932

2. Sousa S, Bandeira M, Carvalho PA, Duarte A, Jordao L. Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int J Mycobacteriol 2015;4:36-43. doi:

3. Halstrom S, Price P, Thomson R. Review: Environmental mycobacteria as a cause of human infection. Int J Mycobacteriol 2015;4:81-91. doi:

4. De Groote MA, Huitt G. Infections due to rapidly growing mycobacteria. Clin Infect Dis 2006;42:1756-63. doi:

5. Falkinham JO III, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 2001;67:1225-31. doi:

6. Taylor RH, Falkinham JO III, Norton CD, LeChevallier MW. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol 2000;66:1702-5. PMCID: PMC92045

7. Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V. Chlorine disinfection of atypical mycobacteria isolated from a water distribution system. Appl Environ Microbiol. 2002;68:1025-32. PMCID: PMC123737

8. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82. PMCID: PMC88925

9. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils: a review. Food Chem Toxicol 2008;46:446-75. doi:

10. Bassole IH, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules 2012;17:3989-4006. doi:

11. Pichersky E, Noel JP, Dudareva N. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 2006;311:808-11. doi:

12. Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000;88:308-16. doi:

13. Arjomandzadegan M, Emami N, Habibi G, et al. ntimycobacterial activity assessment of three ethnobotanical plants against Mycobacterium Tuberculosis: An In Vitro study. Int J Mycobacteriol 2016;5(Suppl 1):S108-9.

14. Jerković I, Marijanović Z. Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chem Biodivers 2010;7:2309-25. doi:

15. Jerković I, Kranjac M, Marijanović Z, Zekić M, Radonić A, Tuberoso CI. Screening of Satureja subspicata Vis. honey by HPLC-DAD, GC-FID/MS and UV/VIS: prephenate derivatives as biomarkers. Molecules 2016;21:377. doi:

16. The Pherobase: Database of Insect Pheromones and Semiochemicals [displayed 19 Feb 2018]. Available at http://www.pherobase.com

17. Andrejak C, Almeida DV, Tyagi S, Converse PJ, Ammerman NC, Grosset JH. Characterization of mouse models of Mycobacterium avium complex infection and evaluation of drug combinations. Antimicrob Agents Chemother 2015;59:2129-35. doi:

18. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42:321-4. doi:

19. Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 2002;46:1914-20. doi:

20. El Kolli M, Laouer H, El Kolli H, Akkal S, Sahli F. Chemicalanalysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action. Asian Pac J Trop Biomed 2016;6:8-15. doi:

21. Miksusanti, Jenie BSL, Priosoeryanto BP, Syarief R, Rekso GT. Mode of action Temu Kunci (Kaempferia pandurata) essential oil on E. coli K1. 1 cell determined by leakage of material cell and salt tolerance assays. HAYATI J Biosci 2008;15:56-60. doi:

22. Bajpai VK, Sharma A, Baek KH. Antibacterial mode of action of the essential oil obtained from Chamaecyparis obtusa sawdust on the membrane integrity of selected foodborne pathogens. Food Technol Biotechnol 2014;52:109-18.

23. Kalantzakis G, Blekas G, Pegklidou K, Boskou D. Stability and radical-scavenging activity of heated olive oil and other vegetable oils. Eur J Lipid Sci Tech 2006;108:329-35. doi:

24. Sela F, Karapandzova M, Stefkov G, Kulevanova S. Chemical composition of berry essential oils from Juniperus communis L. (Cupressaceae) growing wild in Republic of Macedonia and assessment of the chemical composition in accordance to European Pharmacopoeia. Maced Pharm Bull 2011;57:43-51.

25. Hajdari A, Mustafa B, Nebija D, Miftari E, Quave CL, Novak J. Chemical Composition of Juniperus communis L. cone essential oil and its variability among wild populations in Kosovo. Chem Biodivers 2015;12:1706-17. doi:

26. Pepeljnjak S, Kosalec I, Kalođera Z, Blažević N. Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). Acta Pharm 2005;55:417-22. PMID: 16375831

27. Mastelić J, Miloš M, Kuštrak D, Radonić A. Essential oil and glycosidically bound volatile compounds from the needles of common juniper (Juniperus communis L.). CroatChem Acta 2000;73:585-93.

28. Angioni A, Barra A, Russo MT, Coroneo V, Dessiä S, Cabras P. Chemical Composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. J Agric Food Chem 2003;51:3073-8. doi:

29. Chatzopoulou PS, Katsiotis ST. Study of the essential oil from Juniperus communis “Berries” (Cones) growing wild in Greece. Planta Med 1993;59:554-6. doi:

30. Höferl M, Stoilova I, Schmidt E, Wanner J, Jirovetz L, Trifonova D, Krastev L, Krastanov A. Chemical composition and antioxidant properties of Juniper Berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants (Basel) 2014;3:81-98. doi:

31. Haziri A, Faiku F, Mehmeti A, Govori S, Abazi S, Daci M, Haziri I, Bytyqi-Damoni A, Mele A. Antimicrobial properties of the essential oil of Juniperus communis (L.) growing wild in east part of Kosovo. Am J Pharmacol Toxicol 2013;8:128-33. doi:

32. Glišić SB, Milivojević SŽ, Dimitrijević SI, Orlović AM, Skala DU. Antimicrobial activity of the essential oil and indifferent fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J Serb Chem Soc 2007;72:311-20. doi:

33. Orav A, Kailas T, Muurisepp M. Chemical investigation of the essential oil from berries and needles of common juniper (Juniperus communis L.) growing wild in Estonia. Nat Prod Res 2010;24:1789-99. doi:

34. Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995;59:201-22. PMCID: PMC239360

35. Sikkema J, de Bont JA, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 1994;269:8022-8. PMID: 8132524

36. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005;49:2474-8. doi:

37. Kovač J, Šimunović K, Wu Z, Klančnik A, Bucar F, Zhang Q, Smole Možina S. Antibiotic resistance modulation and modes of action of (-)-alpha-pinene in Campylobacter jejuni. PLoS One 2015;10 (4):e0122871. doi:

38. Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol. 2003;95:853-60. doi:

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information


IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1,606



CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 652 537 29
PDF Downloads 288 259 19