Open Access

Glutathionylation: a regulatory role of glutathione in physiological processes


Cite

1. Josephy PD. Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. Hum Genomics Proteomics 2010;2010:876940. doi: 10.4061/2010/876940Search in Google Scholar

2. Wu D, Meydani SN, Sastre J, Hayek M, Meydani M. In vitro glutathione supplementation enhances interleukin-2 production and mitogenic response of peripheral blood mononuclear cells from young and old subjects. J Nutr 1994;124:655-63. PMID: 816965710.1093/jn/124.5.6558169657Search in Google Scholar

3. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015;6:183-97. doi: 10.1016/j.redox.2015.07.008Search in Google Scholar

4. Lu L, Pandey AK, Houseal MT, Mulligan MK. The genetic architecture of murine glutathione transferases. PLoS One 2016;11(2):e0148230. doi: 10.1371/journal.pone.0148230Search in Google Scholar

5. Axarli I, Muleta AW, Chronopoulou EG, Papageorgiou AC, Labrou NE. Directed evolution of glutathione transferases towards a selective glutathione-binding site and improved oxidative stability. Biochim Biophys Acta 2017;1861(1 Pt A):3416-28. doi: 10.1016/j.bbagen.2016.09.004Search in Google Scholar

6. Fernández-Checa JC. Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 2003;304:471-9. doi: 10.1016/S0006-291X(03)00619-3Search in Google Scholar

7. Perricone C, De Carolis C, Perricone R. Glutathione: a key player in autoimmunity. Autoimmun Rev 2009;8:697-701. doi: 10.1016/j.autrev.2009.02.020Search in Google Scholar

8. Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011;15:2335-81. doi: 10.1089/ars.2010.3534Search in Google Scholar

9. Short JD, Downs K, Tavakoli S, Asmis R. Protein thiol redox signaling in monocytes and macrophages. Antioxid Redox Signal 2016;25:816-35. doi: 10.1089/ars.2016.6697Search in Google Scholar

10. Oršolić N, Gajski G, Garaj-Vrhovac V, Dikić D, Prskalo ZŠ, Sirovina D. DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur J Pharmacol 2011;656:110-8. doi: 10.1016/j.ejphar.2011.01.021Search in Google Scholar

11. Oršolić N, Goluža E, Dikić D, Lisičić D, Sašilo K, Rođak E, Jeleč Z, Lazarus MV, Orct T. Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. Eur J Nutr 2014;53:1217-27. doi: 10.1007/s00394-013-0622-7Search in Google Scholar

12. Oršolić N, Skurić J, Dikić D, Stanić G. Inhibitory effect of a propolis on di-n-propyl disulfide or n-hexyl salycilateinduced skin irritation, oxidative stress and inflammatory responses in mice. Fitoterapia 2014;93:18-30. doi: 10.1016/j.fitote.2013.12.007Search in Google Scholar

13. Brzović-Šarić V, Landeka I, Šarić B, Barberić M, Andrijašević L, Cerovski B, Oršolić N, Đikić D. Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients. Mol Vis 2015;21:649-64. PMCID: PMC4462954Search in Google Scholar

14. Montero D, Tachibana C, Rahr Winther J, Appenzeller- Herzog C. Intracellular glutathione pools are heterogeneously concentrated. Redox Biol 2013;1:508-13. doi: 10.1016/j.redox.2013.10.005Search in Google Scholar

15. Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE. Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci USA 1998;95:2956-60. PMCID: PMC1967610.1073/pnas.95.6.2956196769501197Search in Google Scholar

16. Pastore A, Piemonte F. S-Glutathionylation signaling in cell biology: progress and prospects. Eur J Pharm Sci 2012;46:279-92. doi: 10.1016/j.ejps.2012.03.010Search in Google Scholar

17. Yang PM, Wu ZZ, Zhang YQ, Wung BS. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells. Life Sci 2016;155:94-101. doi: 10.1016/j.lfs.2016.05.006Search in Google Scholar

18. Ye ZW, Zhang J, Ancrum T, Manevich Y, Townsend DM, Tew KD. Glutathione S-transferase P-mediated protein S-glutathionylation of resident endoplasmic reticulum proteins influences sensitivity to drug-induced unfolded protein response. Antioxid Redox Signal 2017;26:247-61. doi: 10.1089/ars.2015.6486Search in Google Scholar

19. Allen EMG, Mieyal JJ. Protein-thiol oxidation and cell death: Regulatory role of glutaredoxins. Antioxid Redox Signal 2012;17:1748-63. doi: 10.1089/ars.2012.4644Search in Google Scholar

20. Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, Badalamenti S, Aloisi AM, Santucci A, Rossi R, Milzani A, Dalle-Donne I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic Biol Med 2017;112:360-75. doi: 10.1016/j.freeradbiomed.2017.08.008Search in Google Scholar

21. Mårtensson J, Jain A, Stole E, Frayer W, Auld PA, Meister A. Inhibition of glutathione synthesis in the newborn rat: A model for endogenously produced oxidative stress. Proc Natl Acad Sci USA 1991;88:9360-4. doi: 10.1073/pnas.88.20.9360Search in Google Scholar

22. Lash LH. Role of glutathione transport processes in kidney function. Toxicol Appl Pharmacol 2005;204:329-42. doi: 10.1016/j.taap.2004.10.004Search in Google Scholar

23. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr 2004;134:489-92. doi: 10.1093/jn/134.3.489Search in Google Scholar

24. Lu SC. Glutathione synthesis. Biochim Biophys Acta 2013;1830:3143-53. doi: 10.1016/j.bbagen.2012.09.008Search in Google Scholar

25. Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta 2015;1850:1527-42. doi: 10.1016/j.bbagen.2014.12.001Search in Google Scholar

26. Pias EK, Aw TY. Apoptosis in mitotic competent undifferentiated cells in induced by cellular redox imbalance independent of reactive oxygen species. FASEB J 2002;16:781-90. doi: 10.1096/fj.01-0784comSearch in Google Scholar

27. Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000;20:2175-83. doi: 10.1161/01.ATV.20.10.2175Search in Google Scholar

28. Castro L, Freeman BA. Reactive oxygen species in human health and disease. Nutrition 2001;17:161-5. PMID: 1124034710.1016/S0899-9007(00)00570-0Search in Google Scholar

29. Chia AJL, Goldring CE, Kitteringham NR, Wong SQ, Morgan P, Park BK. Differential effect of covalent protein modification and glutathione depletion on the transcriptional response of Nrf2 and NF-κB. Biochem Pharmacol 2010;80:410-21. doi: 10.1016/j.bcp.2010.04.004Search in Google Scholar

30. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species - the good, the bad and the ugly. Acta Physiol (Oxf) 2015;214:329-48. doi: 10.1111/apha.12515Search in Google Scholar

31. Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008;10:1941-88. doi: 10.1089/ars.2008.2089Search in Google Scholar

32. Ghezzi P. Protein glutathionylation in health and disease. Biochim Biophys Acta 2013;1830:3165-72. doi: 10.1016/j. bbagen.2013.02.009Search in Google Scholar

33. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999;27:916-21. doi: 10.1016/S0891- 5849(99)00177-XSearch in Google Scholar

34. Ault JG, Lawrence DA. Glutathione distribution in normal and oxidatively stressed cells. Exp Cell Res 2003;285:9-14. doi: 10.1016/S0014-4827(03)00012-0Search in Google Scholar

35. Tew KD, Townsend DM. Glutathione-S-transferases as determinants of cell survival and death. Antioxid Redox Signal 2012;17:1728-37. doi: 10.1089/ars.2012.4640Search in Google Scholar

36. Maiorino M, Bosello-Travain V, Cozza G, Miotto G, Roveri A, Toppo S, Zaccarin M, Ursini F. Understanding mammalian glutathione peroxidase 7 in the light of its homologs. Free Radic Biol Med 2015;83:352-60. doi: 10.1016/j.freeradbiomed.2015.02.017Search in Google Scholar

37. Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016;95:27-42. doi: 10.1016/j.freeradbiomed.2016.02.028Search in Google Scholar

38. Grek CL, Zhang J, Manevich Y, Townsend DM, Tew KD. Causes and consequences of cysteine S-glutathionylation. J Biol Chem 2013;288:26497-504. doi: 10.1074/jbc. R113.461368Search in Google Scholar

39. Hughes MM, McGettrick AF, O'Neill LA. Glutathione and glutathione transferase omega 1 as key posttranslational regulators in macrophages. Microbiol Spectr 2017;5(1). doi: 10.1128/microbiolspec.MCHD-0044-2016Search in Google Scholar

40. Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 2013;1830:3217-66. doi: 10.1016/j.bbagen.2012.09.018Search in Google Scholar

41. Mashamaite LN, Rohwer, JM, Pillay CS. The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: Implications for redox systems biology. Biosci Rep 2015;35(1):e00173. doi: 10.1042/BSR20140157Search in Google Scholar

42. Ercolani L, Scirè A, Galeazzi R, Massaccesi L, Cianfruglia L, Amici A, Piva F, Urbanelli L, Emiliani C, Principato G, Armeni T. A possible S-glutathionylation of specific proteins by glyoxalase II: An in vitro and in silico study. Cell Biochem Funct 2016;34:620-7. doi: 10.1002/cbf.3236Search in Google Scholar

43. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 2009;46:443-53. doi: 10.1016/j.freeradbiomed.2008.10.040Search in Google Scholar

44. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P. The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 2013;18:522-55. doi: 10.1089/ars.2011.4391Search in Google Scholar

45. Huang Y, Li W, Su ZY, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 2015; 26: 1401 - 13. doi: 10. 1016/j.jnutbio.2015.08.001Search in Google Scholar

46. Bachhawat AK, Thakur A, Kaur J, Zulkifli M. 2013. Glutathione transporters. Biochim Biophys Acta 2013;1830:3154-64. doi: 10.1016/j.bbagen.2012.11.018Search in Google Scholar

47. Meng Q, Peng Z, Chen L, Si J, Dong Z, Xia Y. Nuclear factor-κB modulates cellular glutathione and prevents oxidative stress in cancer cells. Cancer Lett 2010;299:45-53. doi: 10.1016/j.canlet.2010.08.002Search in Google Scholar

48. Snyder NW, Golin-Bisello F, Gao Y, Blair IA, Freeman BA, Wendell SG. 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem Biol Interact 2015;234:144-53. doi: 10.1016/j.cbi.2014.10.029Search in Google Scholar

49. Reddy NM, Kleeberger SR, Yamamoto M, Kensler TW, Scollick C, Biswal S, Reddy SP. Genetic dissection of the Nrf2-dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection. Physiol Genomics 2007; 32: 74 - 81. doi: 10.1152/physiolgenomics.00126.2007Search in Google Scholar

50. Fatehi-Hassanabad Z, Chan CB, Furman BL. Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 2010;636:8-17. doi: 10.1016/j.ejphar.2010.03.048Search in Google Scholar

51. Schäfer M, Dütsch S, auf dem Keller U, Navid F, Schwarz A, Johnson DA, Johnson JA, Werner S. Nrf2 establishes a glutathione-mediated gradient of UVB cytoprotection in the epidermis. Gene Dev 2010;24:1045-58. doi: 10.1101/gad.568810Search in Google Scholar

52. Queisser N, Oteiza, PI, Link S, Hey V, Stopper H, Schupp N. Aldosterone activates transcription factor Nrf2 in kidney cells both in vitro and in vivo. Antioxid Redox Signal 2014;21:2126-42. doi: 10.1089/ars.2013.5565Search in Google Scholar

53. Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015;23:823-53. doi: 10.1089/ars.2015.6378Search in Google Scholar

54. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013;18:1208-46. doi: 10.1089/ars.2011.4498Search in Google Scholar

55. Carvalho AN, Marques C, Guedes RC, Castro-Caldas M, Rodrigues E, Van Horssen J, Gama MJ. S-Glutathionylation of Keap1: A new role for glutathione S-transferase pi in neuronal protection. FEBS Letters 2016;590:1455-66. doi: 10.1002/1873-3468.12177Search in Google Scholar

56. Espinosa-Díez C, Miguel V, Vallejo S, Sánchez FJ, Sandoval E, Blanco E, Cannata P, Peiró C, Sánchez-Ferrer CF, Lamas S. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis. Redox Biol 2017;14:88-99. doi: 10.1016/j. redox.2017.08.019Search in Google Scholar

57. Tomasi ML, Ryoo M, Yang H, Iglesias Ara A, Ko KS, Lu SC. Molecular mechanisms of lipopolysaccharide-mediated inhibition of glutathione synthesis in mice. Free Radic Biol Med 2014; 68: 148-58. doi: 10.1016/j .freeradbiomed.2013.11.018Search in Google Scholar

58. Peng Z, Geh E, Chen L, Meng Q, Fan Y, Sartor M, Shertzer HG, Liu Z-G, Puga A, Xia Y. Inhibitor of κB kinase β regulates homeostasis by controlling the constitutive levels of glutathione. Mol Pharmacol 2010;77:784-92. doi: 10.1124/mol.109.061424Search in Google Scholar

59. Li W, Busu C, Circu ML, Aw TY. Glutathione in cerebral microvascular endothelial biology and pathobiology: implication for brain homeostasis. Int J Cell Biol 2012;2012:Article ID 434971.. doi: 10.1155/2012/434971.Search in Google Scholar

60. Ferguson G, Bridge W. Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine. Arch Biochem Biophys 2016;593:12-23. doi: 10.1016/j.abb.2016.01.01Search in Google Scholar

61. Staal FJT, Roederer M, Herzenberg LA, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. proc Natl Acad Sci USA 1990;87:9943-7. doi: 10.1073/pnas.87.24.9943Search in Google Scholar

62. Galter D, Mihm S, Dröge W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem 1994;221:639-48. doi: 10.1111/j.1432-1033.1994.tb18776.xSearch in Google Scholar

63. Pinkus R, Weiner LM, Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J Biol Chem 1996;271:13422-9. PMID: 866278710.1074/jbc.271.23.13422Search in Google Scholar

64. Luo Y, Hattori A, Munoz J, Qin Z-H, Roth GS. Intrastriatal dopamine injection induced apoptosis through oxidationinvolved activation of transcription factors AP-1 and NFkappaB in rats. Mol Pharmacol 1999;56:254-64. doi: 10.1124/mol.56.2.254Search in Google Scholar

65. Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med 2000;28:1405-20. doi: 10.1016/S0891-5849(00)00215-XSearch in Google Scholar

66. Rahman I. Regulation of nuclear factor-kappa B, activator protein-1, and glutathione levels by tumor necrosis factoralpha and dexamethasone in alveolar epithelial cells. Biochem Pharmacol 2000;60:1041-9. PMID: 1100794010.1016/S0006-2952(00)00392-0Search in Google Scholar

67. Grimble RF. The effects of sulfur amino acid intake on immune function in humans. J Nutr 2006;136(6 Suppl):1660S- 5S. PMID: 1670233610.1093/jn/136.6.1660S16702336Search in Google Scholar

68. Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med 2008;44:142-52. doi: 10.1016/j.freeradbiomed.2007.02.031Search in Google Scholar

69. Demasi M, Netto LES, Silva GM, Hand A, de Oliveira CLP, Bicev RN, Gozzo F, Barros, MH, Leme JMM, Ohara E. Redox regulation of the proteasome via S-glutathionylation. Redox Biol 2013;2:44-51. doi: 10.1016/j.redox.2013.12.003Search in Google Scholar

70. Kil IS, Kim SY, Park J-W. Glutathionylation regulates IkappaB. Biochem Biophys Res Commun 2008;373:169-73. doi: 10.1016/j.bbrc.2008.06.007Search in Google Scholar

71. Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP. Thioredoxin and its role in toxicology. Toxicol Sci 2004;78:3-14. doi: 10.1093/toxsci/kfh050 Search in Google Scholar

72. Avogaro A, de Kreutzenberg SV. Mechanism of endothelial dysfunction in obesity. Clin Chim Acta 2005;360:9-26. doi: 10.1016/j.cccn.2005.04.020Search in Google Scholar

73. Musiek ES, Milne GL, McLaughlin B, Morrow JD. Cyclopentenoneeicosanoids as mediators of neurodegeneration: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity. Brain Pathol 2005;15:149-58. doi: 10.1111/j.1750-3639.2005.tb00512.xSearch in Google Scholar

74. Ghashghaeinia M, Toulany M, Saki M, Rodemann HP, Mrowietz U, Lang F, Wieder T. Potential roles of the NFκB and glutathione pathways in mature human erythrocytes. Cell Mol Biol Lett 2012;17:11-20. doi: 10.2478/s11658-011-0032-xSearch in Google Scholar

75. Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 1999;27:922-35. doi: 10.1016/S0891-5849(99)00176-8Search in Google Scholar

76. Bossis G, Malnou CE, Farras R, Andermarcher E, Hipskind R, Rodriguez M, Schmidt D, Muller S, Jariel-Encontre I, Piechaczyk M. Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 2005;25:6964-79. doi: 10.1128/MCB.25.16.6964-6979.2005Search in Google Scholar

77. Karihtala P, Soini Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. A PMI S 2007; 115: 81-103. doi: 10.1111/j.1600-0463.2007.apm_514.xSearch in Google Scholar

78. Monje P, Hernández-Losa J, Lyons RJ, Castellone MD, Gutkind JS. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J Biol Chem 2005;280:35081-4. doi: 10.1074/jbc.C500353200Search in Google Scholar

79. Rahman I. Regulation of glutathione in inflammation and chronic lung diseases. Mutat Res 2005;579:58-80. doi: 10.1016/j.mrfmmm.2005.02.025Search in Google Scholar

80. Lu CY, Yang YC, Li CC, Liu KL, Lii CK, Chen HW. Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells. Biochem Pharmacol 2014;91:40-50. doi: 10.1016/j.bcp.2014.06.024Search in Google Scholar

81. Abate C, Patel L, Rauscher FJ 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science 1990;249:1157-61. PMID: 211868210.1126/science.21186822118682Search in Google Scholar

82. Klatt P, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 2000;267:4928-44. doi: 10.1046/j.1432-1327.2000.01601.xSearch in Google Scholar

83. Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013;61:473-501. doi: 10.1016/j.freeradbiomed.2013.04.001Search in Google Scholar

84. Owen CA. Proteinases and oxidants as targets in the treatment of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005;2:373-85. doi: 10.1513/pats.200504-029SRSearch in Google Scholar

85. Pias EK, Aw TY. Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ 2002;9:1007- 16 doi: 10.1038/sj.cdd.4401064Search in Google Scholar

86. Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 2009;16:1303-14. doi: 10.1038/cdd.2009.107Search in Google Scholar

87. Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational modification of caspases: The other side of apoptosis regulation. Trends Cell Biol 2017;27:322-39. doi: 10.1016/j.tcb.2017.01.003Search in Google Scholar

88. Ahmadi Ahstiani HR, Bakhshandi AK, Rahbar M, Mirzaei A, Malekpour A, Rastegar H. Glutathione, cell proliferation and differentiation. Afr J Biotechnol 2011;10:6348-63.Search in Google Scholar

89. Watanabe Y, Murdoch CE, Sano, S, Ido Y, Bachschmid MM, Cohen RA, Matsui R. Glutathione adducts induced by ischemia and deletion of glutaredoxin-1 stabilize HIF-1α and improve limb revascularization. Proc Natl Acad Sci USA 2016;113:6011-6. doi: 10.1073/pnas.1524198113Search in Google Scholar

90. Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS. Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 2007;46:7765-80. doi: 10.1021/bi700425ySearch in Google Scholar

91. Yang K, Wang M, Zhao Y, Sun X, Yang Y, Li X, Zhou A, Chu H, Zhou H, Xu J, Wu M, Yang J, Yi J. A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nat Commun 2016;7:13599. doi: 10.1038/ncomms13599.Search in Google Scholar

92. Riscal R, Schrepfer E, Arena G, Cissé MY, Bellvert F, Heuillet M, Rambow F, Bonneil E, Sabourdy F, Vincent C, Ait-Arsa I, Levade T, Thibaut P, Marine J-C, Portais J-C, Sarry J-E, Le Cam L, Linares LK. Chromatin-bound MDM2 regulates serine metabolism and redox homeostasis independently of p53. Mol Cell 2016;62:890-902. doi: 10.1016/j.molcel.2016.04.033Search in Google Scholar

93. Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016;61:149-62. doi: 10.1016/j.plipres.2015.11.002Search in Google Scholar

94. Polvani S, Tarocchi M, Galli A. PPARγ and Oxidative Stress: Con(β) Catenating NRF2 and FOXO. PPAR Res 2012;2012:641087. doi: 10.1155/2012/641087Search in Google Scholar

95. Frohnert BI, Long EK, Hahn WS, Bernlohr DA. Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes 2014;63:89-100. doi: 10.2337/db13-0777Search in Google Scholar

96. Prasad A, Andrews NP, Padder FA, Husain M, Quyyumi AA. Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J Am Coll Cardiol 1999;34:507-14. doi: 10.1016/S0735-1097(99)00216-8Search in Google Scholar

97. Mariappan N, Elks CM, Sriramula S, Guggilam A, Liu Z, Borkhsenious O, Francis J. NF-κB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res 2009;85:473-83. doi: 10.1093/cvr/cvp305Search in Google Scholar

98. Moran LK, Gutteridge JM, Quinlan GJ. Thiols in cellular redox signalling and control. Curr Med Chem 2001;8:763-72. doi: 10.2174/0929867013372904Search in Google Scholar

99. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA. Inflammation, oxidative stress, and obesity. Int J Mol Sci 2011;12:3117-32. doi: 10.3390/ijms12053117Search in Google Scholar

100. Landeka Jurčević I, Dora M, Guberović I, Petras M, Rimac Brnčić S, Đikić D. Wine lees as a novel functional bioactive compound in protection against oxidative stress and hyperlipidemia. Food Tech Biotech 2017;55:109-16. doi: 10.17113/ftb.55.01.17.4894Search in Google Scholar

101. Maryam A, Mehmood T, Zhang H, Li Y, Khan M, Ma T. Alantolactone induces apoptosis, promotes STAT3 glutathionylation and enhances chemosensitivity of A549 lung adenocarcinoma cells to doxorubicin via oxidative stress. Sci Rep 2017;7:6242. doi: 10.1038/s41598-017-06535-ySearch in Google Scholar

102. Thorén S, Jakobsson P-J. Coordinate up- and downregulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells. Eur J Biochem 2000;267:6428-34. doi: 10.1046/j.1432-1327.2000.01735.xSearch in Google Scholar

103. Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 2007;59:207-24 doi: 10.1124/pr.59.3.1Search in Google Scholar

104. Kanaoka Y, Maekawa A, Penrose JF, Austen KF, Lam BK. Reduced zymosan-induced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J Biol Chem 2001;276:22608-13. doi 10.1074/jbc.M10356220010.1074/jbc.103562200Open DOISearch in Google Scholar

105. Wang W, Ballatori N. Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev 1998;50:335-56. PMID: 9755286Search in Google Scholar

106. Korzekwa AJ, Bodek G, Bukowska J, Blitek A, Skarzynski DJ. Characterization of bovine immortalized luteal endothelial cells: action of cytokines on production and content of arachidonic acid metabolites. Reprod Biol Endocrinol 2011;9:27. doi: 0.1186/1477-7827-9-27Search in Google Scholar

107. Black AT, Gordon MK, Heck DE, Gallo MA, Laskin DL, Laskin JD. UVB light regulates expression of antioxidants and inflammatory mediators in human corneal epithelial cells. Biochem Pharmacol 2011;81:873-80. doi: 10.1016/j. bcp.2011.01.014Search in Google Scholar

108. Cornejo-García JA, Perkins JR, Jurado-Escobar R, García- Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca- López N. Pharmacogenomics of prostaglandin and leukotriene receptors. Front Pharmacol 2016;7:316. doi: 10.3389/fphar.2016.00316Search in Google Scholar

109. Finkensieper A, Kieser S, Bekhite MM, Richter M, Mueller JP, Graebner R, Figulla H-R, Sauer H, Wartenberg M. The 5-lipoxygenase pathway regulates vasculogenesis in differentiating mouse embryonic stem cells. Cardiovasc Res 2010;86:37-44. doi: 10.1093/cvr/cvp385Search in Google Scholar

110. Niegowski D, Kleinschmidt T, Ahmad S, Qureshi AA, Mårback M, Rinaldo-Matthis A, Haeggström JZ. Structure and inhibition of mouse leukotriene C4 synthase. PLoS One 2014;9(5):e96763. doi: 10.1371/journal.pone.0096763Search in Google Scholar

111. Martinez Molina D, Wetterholm A, Kohl A, McCarthy AA, Niegowski D, Ohlson E, Hammarberg T, Eshaghi S, Haeggström JZ, Nordlund P. Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature 2007;448:613-6. doi: 10.1038/nature06009Search in Google Scholar

112. Elsas PX, Queto T, Mendonça-Sales SC, Elsas MI, Kanaoka Y, Lam BK. Cysteinyl leukotrienes mediate the enhancing effects of indomethacin and aspirin on eosinophil production in murine bone marrow cultures. Br J Pharmacol 2008;153:528-35. doi: 10.1038/sj.bjp.0707586Search in Google Scholar

113. Rouzer CA, Scott WA, Griffith OW, Hamill AL, Cohn ZA. Depletion of glutathione selectively inhibits synthesis of leukotriene C by macrophages. Proc Natl Acad Sci USA 1981;78:2532-6. PMCID: PMC31938210.1073/pnas.78.4.25323193826113592Search in Google Scholar

114. Samuelsson B. Arachidonic acid metabolism: role in inflammation. Z Rheumatol 1991;50(Suppl 1):3-6. PMID: 1907059 Search in Google Scholar

115. Brock TG. Regulating leukotriene synthesis: the role of nuclear 5-lipoxygenase. J Cell Biochem 2005;96:1203-11. doi: 10.1002/jcb.20662Search in Google Scholar

116. Rinaldo-Matthis A, Wetterholm A, Martinez Molina D, Holm J, Niegowski D, Ohlson E, Nordlund P, Morgenstern R, Haeggström JZ. Arginine 104 is a key catalytic residue in leukotriene C4 synthase. J Biol Chem 2010;285:40771-6. doi: 10.1074/jbc.M110.105940Search in Google Scholar

117. Penrose JF, Spector J, Baldasaro M, Xu K, Boyce, Arm JP, Austen KF, Lam BK. Molecular cloning of the gene for human leukotriene C4 synthase. J Biol Chem 1996;271:11356-61. doi: 10.1074/jbc.271.19.11356 Search in Google Scholar

118. Penrose JF. LTC4 synthase. Enzymology, biochemistry, and molecular characterization. Clin Rev Allergy Immunol 1999;17:133-52. doi: 10.1007/BF02737601Search in Google Scholar

119. Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, Miyano M Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 2007;448:609-12. doi: 10.1038/nature05936Search in Google Scholar

120. Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect 1997;105:791-9. doi: 10.2307/3433285 Search in Google Scholar

121. Murakami M, Austen KF, Bingham CO 3rd, Friend DS, Penrose JF, Arm JP. Interleukin-3 regulates development of the 5-lipoxygenase/leukotriene C4 synthase pathway in mouse mast cells. J Biol Chem 1995;270:22653-6. doi: 10.1074/jbc.270.39.22653Search in Google Scholar

122. Lam BK, Austen KF. Leukotriene C4 synthase: a pivotal enzyme in the biosynthesis of the cysteinyl leukotrienes. Am J Respir Crit Care Med 2000;161(Suppl 1):S16-9. doi: 10.1164/ajrccm.161.supplement_1.ltta-4Search in Google Scholar

123. Sanak M, Sampson AP. Biosynthesis of cysteinyl-leucotrienes in aspirin-intolerant asthma. Clin Exp Allergy 1999;29:306-13. doi: 10.1046/j.1365-2222.1999.00443.x Search in Google Scholar

124. Mayatepek E. Leukotriene C4 synthesis deficiency: a member of a probably underdiagnosed new group of neurometabolic diseases. Eur J Pediatr 2000;158:811-8. doi: 10.1007/s004310000601Search in Google Scholar

125. Christmas P, Weber BM, McKee M, Brown D, Soberman RJ. Membrane localization and topology of leukotriene C4 synthase. J Biol Chem 2002;277:28902-8. doi: 10.1074/jbc.M203074200Search in Google Scholar

126. Sakamoto H, Imai H, Nakagawa Y. Involvement of phospholipid hydroperoxide glutathione peroxidase in the modulation of prostaglandin D2 synthesis. J Biol Chem 2000;275:40028-35. doi: 10.1074/jbc.M003191200Search in Google Scholar

127. Yamagata K, Matsumura K, Inoue W, Shiraki T, Suzuki K, Yasuda S, Sugiura H, Cao C, Watanabe Y, Kobayashi S. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J Neurosci 2001;21:2669-77. PMID: 1130662010.1523/JNEUROSCI.21-08-02669.2001Search in Google Scholar

128. Ishii T. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic Biol Med 2015;88(Pt B):189-98. doi: 10.1016/j. freeradbiomed.2015.04.034Search in Google Scholar

129. Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, Ikeda T, Fueki M, Ueno A, Oh S, Kudo I. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000;275:32783-92. doi: 10.1074/jbc.M003505200Search in Google Scholar

130. Blaine SA, Meyer AM, Hurteau G, Wick M, Hankin JA, Murphy RC, Dannenberg AJ, Geraci MW, Subbaramaiah K, Nemenoff RA. Targeted over-expression of mPGES-1 and elevated PGE2 production is not sufficient for lung tumorigenesis in mice. Carcinogenesis 2005;26:209-17. doi: 10.1093/carcin/bgh302Search in Google Scholar

131. Jakobsson P-J, Thorén S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci USA 1999;96:7220-5. PMCID: PMC2205810.1073/pnas.96.13.72202205810377395Search in Google Scholar

132. Thorén S, Weinander R, Saha S, Jegerschöld C, Petterson PL, Samuelsson B, Hebert H, Hamberg M, Morgenstern R, Jakobsson P-J. Human microsomal prostaglandin E synthase-1: purification, functional characterization, and projection structure determination. J Biol Chem 2003;278:22199-209. doi: 10.1074/jbc.M303227200Search in Google Scholar

133. Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar J-L, Jacques C. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is mechanosensitive gene. Arthritis Res Ther 2006;8:R135. doi: 10.1186/ar2024Search in Google Scholar

134. Schmidt-Krey I, Kanaoka Y, Mills DJ, Irikura D, Haase W, Lam BK, Austen KF, Kühlbrandt W. Human leukotriene C4 synthase at 4.5 Å resolution in projection. Structure 2004;12:2009-14. doi: 10.1016/j.str.2004.08.008Search in Google Scholar

135. Kudo I, Murakami M. Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol 2005;38:633-8. doi: 10.5483/BMBRep.2005.38.6.633Search in Google Scholar

136. Sjögren T, Nord J, Ek M, Johansson P, Liu G, Geschwindnera S. Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily. Proc Natl Acad Sci USA 2013;110:3806-11. doi: 10.1073/pnas.1218504110Search in Google Scholar

137. Gudis K, Tatsuguchi A, Wada K, Futagami S, Nagata K, Hiratsuka T, Shinji Y, Miyake K, Tsukui T, Fukuda Y, Sakamoto C. Microsomal prostaglandin E synthase (mPGES)-1, mPGES-2 and cytosolic PGES expression in human gastritis and gastric ulcer tissue. Lab Invest 2005;85:225-36. doi: 10.1038/labinvest.3700200Search in Google Scholar

138. Takusagawa F. Microsomal prostaglandin E synthase type 2 (mPGES2;is a glutathione-dependent heme protein, and dithiothreitol dissociates the bound heme to produce active prostaglandin E2 synthase in vitro. J Biol Chem 2013;288:10166-75. doi: 10.1074/jbc.M112.418475Search in Google Scholar

139. Biswas SK, Rahman I. Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Mol Aspects Med 2009;30:60-76. doi: 10.1016/j.mam.2008.07.001Search in Google Scholar

140. Aslani A, Ghobadi BS. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci 2016;146:163-73. doi: 10.1016/j.lfs.2016.01.014Search in Google Scholar

141. Portal-Núñez S, Esbrit P, Alcaraz MJ, Largo R. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem Pharmacol 2016;108:1-10. doi: 10.1016/j.bcp.2015.12.012Search in Google Scholar

142. Haddad JJ, Safieh-Garabedian B, Saadé NE, Land SC. Thiol regulation of pro-inflammatory cytokines reveals a novel immunopharmacological potential of glutathione in the alveolar epithelium. J Pharmacol Exp Ther 2001;296:996-1005. PMID: 11181934Search in Google Scholar

143. Villa P, Saccani A, Sica A, Ghezzi P. Glutathione protects mice from lethal sepsis by limiting inflammation and potentiating host defense. J Infect Dis 2002;185:1115-20. doi: 10.1086/340042Search in Google Scholar

144. Shelton MD, Mieyal JJ. Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cells 2008;25:332-463. PMCID: PMC3367451Search in Google Scholar

145. Jones JT, Qian X, van der Velden JL, Chia SB, McMillan DH, Flemer S, Hoffman SM, Lahue KG, Schneider RW, Nolin JD, Anathy V, van der Vliet A, Townsend DM, Tew KD, Janssen-Heininger YM. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells. Redox Biol 2016;8:375-82. doi: 10.1016/j.redox.2016.03.005Search in Google Scholar

146. Chiou YS, Huang Q, Ho CT, Wang YJ, Pan MH. Directly interact with Keap1 and LPS is involved in the antiinflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Radic Biol Med 2016;94:1-16. doi: 10.1016/j.freeradbiomed.2016.02.010Search in Google Scholar

147. Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci USA 1998;95:3071-6. PMCID: PMC1969610.1073/pnas.95.6.3071196969501217Search in Google Scholar

148. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 2007;121:2381-6. doi: 10.1002/ijc.23192Search in Google Scholar

149. Dröge W, Pottmeyer-Gerber C, Schmidt H, Nick S. Glutathione augments the activation of cytotoxic T lymphocytes in vivo. Immunobiology 1986;172:151-6. doi: 10.1016/S0171-2985(86)80061-4Search in Google Scholar

150. Dröge W, Breitkreutz R. Glutathione and immune function. Proc Nutr Soc 2000;59:595-600. doi: 10.1017/S0029665100000847Search in Google Scholar

151. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016;2016:7432797 doi: 10.1155/2016/7432797Search in Google Scholar

152. Hadzic T, Li L, Cheng N, Walsh SA, Spitz DR, Knudson CM. The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J Immunol 2005;175:7965-72. doi: 10.4049/jimmunol.176.9.5682-bSearch in Google Scholar

153. Kwyer TA, Bounous SG, Sataloff RT. Implications of nutriceutical modulation of glutathione with cystine and cysteine. In: Sataloff RT, editor: Voice Science. San Diego (CA): Plural Publishing; 2005. p. 125-47.Search in Google Scholar

154. Madondo MT, Quinn M, Plebanski M. Low dosecyclophosphamide: Mechanisms of T cell modulation. Cancer Treat Rev 2016;42:3-9. doi: 10.1016/j.ctrv.2015.11.005Search in Google Scholar

155. Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA 2002;99:3505-10. doi: 10.1073/pnas.052592699Search in Google Scholar

156. Sikalidis AK. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res 2015;21:9-17. doi: 10.1007/s12253-014-9860-0Search in Google Scholar

157. Aukrust P, Svardal AM, Müller F, Lunden B, Berge RK, Ueland PM, Frøland SS. Increased levels of Oxidized glutathione in CD4+ lymphocytes associated with disturbed intracellular redox balance in human immunodeficiency virus type 1 infection. Blood 1995;86:258-67. PMID: 779523110.1182/blood.V86.1.258.bloodjournal861258Search in Google Scholar

158. Samikkannu T, Ranjith D, Rao KV, Atluri VS, Pimentel E, El-Hage N, Nair MP. HIV-1 gp120 and morphine induced oxidative stress: Role in cell cycle regulation. Front Microbiol 2015;6:614. doi: 10.3389/fmicb.2015.00614Search in Google Scholar

159. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir Res 2006;7:125. doi: 10.1186/1465-9921-7-125Search in Google Scholar

160. Zhang X, Liu P, Zhang C, Chiewchengchol D, Zhao F, Yu H, Li J, Kambara H, Luo KY, Venkataraman A, Zhou Z, Zhou W, Zhu H, Zhao L, Sakai J, Chen Y, Ho YS, Bajrami B, Xu B, Silberstein LE, Cheng T, Xu Y, Ke Y, Luo HR. Positive regulation of interleukin-1β bioactivity by physiological ROS-mediated cysteine S-glutathionylation. Cell Rep 2017;20:224-35. doi: 10.1016/j.celrep.2017.05.070Search in Google Scholar

161. He Y, Jackman NA, Thorn TL, Vought VE, Hewett SJ. Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis. Glia 2015;63:1568-80. doi: 10.1002/glia.22828Search in Google Scholar

162. Heales SJ, Bolaños JP. Impairment of brain mitochondrial nction by reactive nitrogen species: the role of glutathione dictating susceptibility. Neurochem Int 2002;40:469-74. doi: 10.1016/S0197-0186(01)00117-6Search in Google Scholar

163. Yap LP, Sancheti H, Ybanez MD, Garcia J, Cadenas E, Han D. Determination of GSH and GSNO using HPLC with electrochemical detection. Methods Enzymol 2010;473:137-47. doi: 10.1016/S0076-6879(10)73006-8Search in Google Scholar

164. Martínez-Ruiz A, Lamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 2007;75:220-8. doi: 10.1016/j.cardiores.2007.03.016Search in Google Scholar

165. Shang Q, Bao L, Guo H, Hao F, Luo Q, Chen J, Guo C. Contribution of glutaredoxin-1 to S-glutathionylation of endothelial nitric oxide synthase for mesenteric nitric oxide generation in experimental necrotizing enterocolitis. Transl Res 2017;188:92-105. doi: 10.1016/j.trsl.2016.01.004Search in Google Scholar

166. Li C-Q, Wogan GN. Nitric oxide as a modulator of apoptosis. Cancer Lett 2005;226:1-5. doi: 10.1016/j.canlet.2004.10.021Search in Google Scholar

167. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova- Kostova AT, Butterfield, DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009;11:2717-39. doi: 10.1089/ARS.2009.2721Search in Google Scholar

168. Rauhala P, Andoh T, Chiueh CC. Neuroprotective properties of nitric oxide and S-nitrosoglutathione. Toxicol Appl Pharmacol 2005;207(Suppl 2):91-5. doi: 10.1016/j.taap.2005.02.028Search in Google Scholar

169. Hudson VM. Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 2001;30:1440-61. doi: 10.1016/S0891-5849(01)00530-5Search in Google Scholar

170. Feelisch M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch Pharmacol 1998;358:113-22. doi: 10.1007/PL00005231Search in Google Scholar

171. Hill BG, Bhatnagar A. Role of glutathiolation in preservation, restoration and regulation of protein function. IUBMB Life 2007;59:21-6. doi: 10.1080/15216540701196944Search in Google Scholar

172. Khan M, Sakakima H, Dhammu TS, Shunmugavel A, Im YB, Gilg AG, Singh AK, Singh I. S-nitrosoglutathione reduces oxidative injury and promotes mechanisms neurorepair following traumatic brain injury in rats. J Neuroinflammation 2011;8:78-134. doi: 10.1186/1742-2094-8-78Search in Google Scholar

173. Broniowska KA, Diers AR, Hogg N. S-Nitrosoglutathione.Biochim Biophys Acta 2013;1830:3173-81. doi: 10.1016/j. bbagen.2013.02.004Search in Google Scholar

174. Del Rio LA. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 2011;506:1-11. doi: 10.1016/j.abb.2010.10.022Search in Google Scholar

175. Guerra D, Ballard K, Truebridge I, Vierling E. S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 2016;55:2452-64. doi: 10.1021/acs.biochem.5b01373Search in Google Scholar

176. Nascimento NRF, Costa-e-Forti A, Peter AA, Fonteles MC.Free radical scavengers improve the impaired endotheliumdependent responses in aorta and kidneys of diabetic rabbits. Diabetes Res Clin Pract 2003;61:145-53. doi: 10.1016/ S0168-8227(03)00128-1Search in Google Scholar

177. Ganzarolli de Oliveira M. S-Nitrosothiols as platforms for topical nitric oxide delivery. Basic Clin Pharmacol Toxicol 2016;119(Suppl 3):49-56. doi: 10.1111/bcpt.12588Search in Google Scholar

178. Duan S, Chen C. S-nitrosylation/denitrosylation and apoptosis of immune cells. Cell Mol Immunol 2007;4:353-358. PMID: 17976315. Search in Google Scholar

179. Samuvel DJ, Shunmugavel A, Singh, AK, Singh I, Khan M. S-Nitrosoglutathione ameliorates acute renal dysfunction in a rat model of lipopolysaccharide-induced sepsis. J Pharm Pharmacol 2016;68:1310-9. doi: 10.1111/jphp.12608Search in Google Scholar

180. Wu W, Perrin-Sarrado C, Ming H, Lartaud I, Maincent P, Hu XM, Sapin-Minet A, Gaucher C. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rataorta. Nanomedicine 2016;12:1795-803. doi: 10.1016/j.nano.2016.05.006Search in Google Scholar

181. Wu W, Gaucher C, Fries I, Hu XM, Maincent P, Sapin-Minet A. Polymer nanocomposite particles of S-nitrosoglutathione: A suitable formulation for protection and sustained oral delivery. Int J Pharm 2015;495:354-61. doi: 10.1016/j.ijpharm.2015.08.074.Search in Google Scholar

182. Shah SU, Socha M, Fries I, Gibaud S. Synthesis of S-nitrosoglutathione-alginate for prolonged delivery of nitric oxide in intestines. Drug Deliv 2016;23:2927-35. doi: 10.3109/10717544.2015.1122676Search in Google Scholar

183. Sabens Liedhegner EA, Gao X-H, Mieyal JJ. Mechanisms of altered redox regulation in neurodegenerative diseasesfocus on S-glutathionylation. Antiox Redox Sign 2012;16:543-66. doi: 10.1089/ars.2011.4119Search in Google Scholar

184. Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012;4:1399-440. doi: 10.3390/nu4101399Search in Google Scholar

185. Foley TD, Cantarella KM, Gillespie PF, Stredny ES. Protein vicinal thiol oxidations in the healthy brain: Not so radical links between physiological oxidative stress and neural cell activities. Neurochem Res 2014;39:2030-9. doi: 10.1007/s11064-014-1378-zSearch in Google Scholar

186. Zhou M, Paša-Tolić L, Stenoien DL. Profiling of histone post-translational modifications in mouse brain with highresolution top-down mass spectrometry. J Proteome Res 2017;16:599-608. doi: 10.1021/acs.jproteome.6b00694Search in Google Scholar

187. Johnson WM, Yao C, Siedlak SL, Wang W, Zhu X, Caldwell GA, Wilson-Delfosse AL, Mieyal JJ, Chen SG. Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson's disease. Hum Mol Genet 2015;24:1322-35. doi: 10.1093/hmg/ddu542Search in Google Scholar

188. Srivenugopal KS, Rawat A, Niture SK, Paranjpe A, Velu C, Venugopal SN, Madala HR, Basak D, Punganuru SR. Posttranslational regulation of O6-methylguanine-DNAmethyltransferase (MGMT) and new opportunities for treatment of brain cancers. Mini Rev Med Chem 2016;16:455-64. doi: 10.2174/1389557515666150722101046Search in Google Scholar

189. Hong C, Seo H, Kwak M, Jeon J, Jang J, Jeong EM, Myeong J, Hwang YJ, Ha K, Kang MJ, Lee KP, Yi EC, Kim I-G, Jeon J-H, Ryu H, So I. Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington's disease. Brain 2015;138:3030-47. doi: 10.1093/brain/awv188Search in Google Scholar

190. Lakunina VA, Petrushanko IY, Burnysheva KM, Mitkevich VA, Makarov AA. Alzheimer’s disease Aβ42 peptide induces an increase in Na,K-ATPase glutathionylation. Dokl Biochem Biophys 2017;473:114-7. doi: 10.1134/S1607672917020077Search in Google Scholar

191. Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Rad Biol Med 2013;62:157-69. doi: 10.1016/j.freeradbiomed.2012.09.027Search in Google Scholar

192. Zhang C, Kuo C-C, Chiu AWL, Feng J. Prediction of S-glutathionylated proteins progression in Alzheimer's transgenic mouse model using principle component analysis. J Alzheimers Dis 2012;30:919-34. doi: 10.3233/JAD-2012-120028Search in Google Scholar

193. Dergousova EA, Petrushanko IY, Klimanova EA, Mitkevich VA, Ziganshin RH, Lopina OD, Makarov AA. Effect of reduction of redox modifications of cys-residues in the Na,KATPase α1-subunit on its activity. Biomolecules 2017;7:18. doi: 10.3390/biom7010018Search in Google Scholar

194. Bogdanova A, Petrushanko IY, Hernansanz-Agustín P, Martínez-Ruiz A. “Oxygen sensing” by Na,K-ATPase: These miraculous thiols. Front Physiol 2016;7:314. doi: 10.3389/ fphys.2016.00314Search in Google Scholar

195. Lewerenz J, Maher P. Control of redox state and redox signaling by neural antioxidant systems. Antioxid Redox Signal 2011;14:1449-65. doi:10.1089/ars.2010.3600Search in Google Scholar

196. Murdoch CE, Bachschmid MM, Matsui R. Regulation of neovascularization by S-glutathionylation via Wnt5a-sFlt-1 pathway. Biochem Soc Trans 2014;42:1665-70. doi: 10.1042/BST20140213Search in Google Scholar

197. Pimentel D, Haeussler DJ, Reiko Matsui, Burgoyne JR, Richard Alan Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012;16:524-42. doi: 10.1089/ars.2011.4336Search in Google Scholar

198. Samarasinghe KT, Munkanatta Godage DN, Zhou Y, Ndombera FT, Weerapana E, Ahn YH. A clickable glutathione approach for identification of protein glutathionylation in response to glucose metabolism. Mol BioSyst 2016;12:2471- 80 doi: 10.1039/C6MB00175KSearch in Google Scholar

199. Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 2016;24:680-712. doi: 10.1089/ars.2015.6266Search in Google Scholar

200. Pal D, Sharma D, Kumar M, Sandur SK. Prediction of glutathionylation sites in proteins using minimal sequence information and their experimental validation. Free Radic Res 2016;50:1011-21. doi: 10.1080/10715762.2016.Search in Google Scholar

201. Mullen L, Seavill M, Hammouz R, Bottazzi B, Chan P, Vaudry D, Ghezzi P. Development of ‘Redox Arrays’ for identifying novel glutathionylated proteins in the secretome. Sci Rep 2015;5:14630. doi: 10.1038/srep14630Search in Google Scholar

202. Lu S, Fan SB, Yang B, Li YX, Meng JM, Wu L, Li P, Zhang K, Zhang MJ, Fu Y, Luo J, Sun RX, He SM, Dong MQ. Mapping native disulfide bonds at a proteome scale. Nature Methods 2015;12:329-31. doi: 10.1038/nmeth.3283Search in Google Scholar

203. Zhang C, Rodriguez C, Circu ML, Aw TY, Feng J. S-glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection. Analyt Bioanalyt Chem 2011;401:2165-75. doi: 10.1007/s00216-011-5311-xSearch in Google Scholar

204. Duan J, Kodali VK, Gaffrey MJ, Guo J, Chu RK, Camp DG, Smith RD, Thrall BD, Qian WJ. Quantitative profiling of protein S-glutathionylation reveals redox-dependent regulation of macrophage function during nanoparticleinduced oxidative stress. ACS Nano 2016;10:524-38. doi: 10.1021/acsnano.5b05524Search in Google Scholar

205. Hou Y, Li X, Dai Z, Wu Z, Bazer FW, Wu G. Analysis of glutathione in biological samples by HPLC involving precolumn derivatization with o-phthalaldehyde. Methods Mol Biol 2018;1694:105-15. doi: 10.1007/978-1-4939-7398-9_10Search in Google Scholar

206. García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic BiolMed 2017; 112: 36-48. doi: 10.1016/j.freeradbiomed.2017.07.008Search in Google Scholar

207. Bräutigam L, Jensen LD, Poschmann G, Nyström S, Bannenberg S, Dreij K, Lepka K, Prozorovski T, Montano SJ, Aktas O, Uhlén P, Stühler K, Cao Y, Holmgren A, Berndt C. Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proc Natl Acad Sci USA 2013;110:20057-62. doi: 10.1073/pnas.1313753110.Search in Google Scholar

208. Avalle L, Camporeale A, Camperi A, Poli V. STAT3 in cancer: A double edged sword. Cytokine 2017;98:42-50. doi: 10.1016/j.cyto.2017.03.018 Search in Google Scholar

209. Guglielmo A, Sabra A, Elbery M, Cerveira MM, Ghenov F, Sunasee R, Ckless K. A mechanistic insight into curcumin modulation of the IL-1β secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells. Chem Biol Interact 2017;274:1-12. doi: 0.1016/j.cbi.2017.06.028Search in Google Scholar

210. Hughes MM, Lavrencic P, Coll RC, Ve T, Ryan DG, Williams NC, Menon D, Mansell A, Board PG, Mobli M, Kobe B, O'Neill LAJ. Solution structure of the TLR adaptor MAL/ TIRAP reveals an intact BB loop and supports MAL Cys91 glutathionylation for signaling. Proc Natl Acad Sci USA 2017;114:E6480-9. doi: 10.1073/pnas.1701868114Search in Google Scholar

211. O'Brien M, Chalker J, Slade L, Gardiner D, Mailloux RJ. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic Biol Med 2017;106:302-14. doi: 10.1016/j. freeradbiomed.2017.02.046Search in Google Scholar

212. Barinova KV, Serebryakova MV, Muronetz VI, Schmalhausen EV. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme. Biochim Biophys Acta 2017;1861:3167-77. doi: 10.1016/j.bbagen.2017.09.008Search in Google Scholar

213. Muronetz VI, Barinova KV, Stroylova YY, Semenyuk PI, Schmalhausen EV. Glyceraldehyde-3-phosphate dehydrogenase: Aggregation mechanisms and impact on amyloid neurodegenerative diseases. Int J Biol Macromol 2017;100:55-66. doi: 10.1016/j.ijbiomac.2016.05.066Search in Google Scholar

214. de Winter JM, Ottenheijm CA. A two-faced cysteine residue modulates skeletal muscle contraction. Focus on “S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers”. Am J Physiol Cell Physiol 2017;312:C314-5. doi: 10.1152/ajpcell.00009.2017Search in Google Scholar

215. Dutka TL, Mollica JP, Lamboley CR, Weerakkody VC, Greening DW, Posterino GS, Murphy RM, Lamb GD. S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers. Am J Physiol Cell Physiol 2017;312:C316-27. doi: 10.1152/ajpcell.00334.2016Search in Google Scholar

216. Thaher O, Wolf C, Dey PN, Pouya A, Wüllner V, Tenzer S, Methner A. The thiol switch C684 in Mitofusin-2 mediates redox-induced alterations of mitochondrial shape and respiration. Neurochem Int 2017; doi: 10.1016/j. neuint.2017.05.009Search in Google Scholar

217. Matsui R, Watanabe Y, Murdoch CE. Redox regulation of ischemic limb neovascularization - what we have learned from animal studies. Redox Biol 2017;12:1011-9. doi: 10.1016/j.redox.2017.04.040Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other