Cite

1. Barthwal J, Nair S, Kakkar P. Heavy metal accumulation in medicinal plants collected from environmentally different sites. Biomed Environ Sci 2008;21:319-24. doi: 10.1016/S0895-3988(08)60049-5Search in Google Scholar

2. Gjorgieva D, Kadifkova-Panovska T, Bačeva K, Stafilov T. Content of toxic and essential metals in medicinal herbs growing in polluted and unpolluted areas of Macedonia. Arh Hig Rada Toksikol 2010;61:297-303. doi: 10.2478/10004-1254-61-2010-2022Search in Google Scholar

3. Kulhari A, Sheorayan A, Bajar S, Sarkar S, Chaudhury A, Kalia RK. Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. Springerplus 2013;2:676. doi: 10.1186/2193-1801-2-676Search in Google Scholar

4. Kosalec I, Cvek J, Tomić S. Contaminants of medicinal herbs and herbal products. Arh Hig Rada Toksikol 2009;60:485-501. doi: 10.2478/10004-1254-60-2009-2005.Search in Google Scholar

5. Manousaki E, Kalogerakis N. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res Int 2009;16:844-54. doi: 10.1007/s11356-009-0224-3Search in Google Scholar

6. Fux J, Gosar M. Vsebnosti svinca in drugih težkih kovin v sedimentih na območju Mežiške doline [Lead and other heavy metals in stream sediments in the area of Meža valley, in Slovenian]. Geologija 2007;50:347-60. doi: 10.5474/geologija.2007.025Search in Google Scholar

7. Eržen I, Janet E. Svinec v krvi tri leta starih otrok, ki živijo na območju Zgornje in Spodnje Mežiške doline [Blood lead concentrations in three-year-old children living of the Upper and Lower Mežica valley, in Slovenian]. Zdrav Var 2005;44:18-25.Search in Google Scholar

8. Ivartnik M, Eržen I. Uporaba modela IEUBK za napoved vsebnosti svinca v krvi otrok pri raziskavah in sanaciji okolja v Zgornji Mežiški dolini [The IEUBK model for lead blood burden prediction in children used in the exploration and remediation of the Upper Meža Valley environment, in Slovenian]. Zdrav Var 2010;49:76-85.Search in Google Scholar

9. Finžgar N, Leštan D. Ocena dostopnosti težkih kovin iz onesnaženih tal Mežiške doline [Evaluation of heavy metals accessibility in poluted soils from Mežica valley, in Slovenian]. Acta Agric Slov 2008;91:157-66.Search in Google Scholar

10. Vidic T, Lah B, Berden-Zrimec M, Marinsek-Logar R.Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters. Environ Toxicol 2009;24:472-83. doi: 10.1002/tox.20451Search in Google Scholar

11. Prpić-Majić D, Pongračić J, Hršak J, Pizent A. A follow-up study in a lead smelter community following the introduction of an effective pollution control system. Isr J Med Sci 1992;28:548-56. PMID: 1428809Search in Google Scholar

12. Prpić-Majić D, Fugaš M, Souvent P, Sušnik J, Šarić M. Istraživanja olova, kadmija i cinka u dolini rijeke Meže. Zagreb: Institut za medicinska istraživanja i medicinu rada; 1996.Search in Google Scholar

13. Karalić K, Lončarić Z, Popović B, Zebec V, Kerovec D. Liming effect on soil heavy metals availability. Poljoprivreda 2013;19:59-64.Search in Google Scholar

14. Kashem MA, Singh BR. Metal availability in contaminatedsoils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr Cycling Agroecosyst 2001;61:247-55. doi: 10.1023/A:1013762204510Search in Google Scholar

15. Ražić S, Đogo S, Slavković L. Multivariate characterization of herbal drugs and rhizospere soil samples according to their metallic content. Microchem J 2006;84:93-101. doi: 10.1016/j.microc.2006.05.008Search in Google Scholar

16. Vandecasteele C, Block CB. Modern Methods for Trace Element Determination. New York: John Wiley & Sons; 1997.Search in Google Scholar

17. Gilkes RJ, McKenzie RM. Geochemistry and mineralogy of manganese in soils. In: Graham RD, Hannam RJ, Uren NC, editors. Manganese in soils and plants. Dordrecht: Kluwer Academic Publishers; 1988. p. 23-35.10.1007/978-94-009-2817-6_3Search in Google Scholar

18. United States Environmental Protection Agency (US EPA). Health Effects Notebook for Hazardous Air Pollutants [displayed 5 May 2017]. Available at https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutantsSearch in Google Scholar

19. United States Environmental Protection Agency (US EPA). Ecological Soil Screening Level for Iron, Interim Final OSWER Directive 9285.7-69, 2003 [displayed 6 December 2016]. Available at http://rais.ornl.gov/documents/eco-ssl_iron.pdfSearch in Google Scholar

20. Uradni list RS (UL). Uredba o mejnih, opozorilnih in kritičnihimisijskih vrednostih nevarnih snovi v tleh, stran 5773 [Decree on limit values, alert thresholds, and critical levels of dangerous substances in soil, in Slovenian] [displayed 5 May 2017]. Available at http://www.uradni-list.si/1/content?id=12912Search in Google Scholar

21. Kabata-Pendias A. Trace Elements in Soils and Plants. 4thed. Boca Raton: Taylor and Francis Group; 2011. 10.1201/b10158Search in Google Scholar

22. Rieuwerts JS, Thornton I, Farago ME, Ashmore MR. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Spec Bioavailab 1998;10(2):61-75. doi: 10.3184/095422998782775835.Search in Google Scholar

23. Cataldo DA, Wildung RE. Soil and plant factors influencing the accumulation of heavy metals by plants. Environ Health Perspect 1978;27:149-59. doi: 10.2307/3428874Search in Google Scholar

24. Symeonides A, McRae SS. The assessment of plant-available cadmium in soils. J Environ Qual 1977;6:120-2. doi: 10.2134/jeq1977.00472425000600020003xSearch in Google Scholar

25. Maiz I, Arambarri I, Garcia R, Millán E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 2000;110:3-9. doi: 10.1016/S0269-7491(99)00287-0Search in Google Scholar

26. Viets FG Jr. Micronutrient availability, chemistry and availability of micronutrients in soils. J Agric Food Chem1962;10:174-8. doi: 10.1021/jf60121a004Search in Google Scholar

27. European Commission (EC). Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance) (OJ L 364, 20.12.2006, p. 5) [displayed 5 May 2017]. Available at http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20100701&from=ENSearch in Google Scholar

28. Ražić S, Đogo S. Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave acid assisted digestion to assess potential bioavailability. Chemospher e 2 0 1 0 ; 7 8 : 4 5 1 - 6 . d o i : 1 0 . 1 0 1 6 / j .chemosphere.2009.10.028Search in Google Scholar

29. Wang XP, Shan XQ, Zhang SZ, Wen B. A model for valuation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere2004;55:811-22. doi: 10.1016/j.chemosphere.2003.12.003Search in Google Scholar

30. Kabelitz L. Zur Schwermetallbelastung von Arznei- und Kräuterdrogen [Heavy metals in herbal drugs, in German]. Pharm Ind 1998;60:444-51.Search in Google Scholar

31. Gasser U, Klier B, Kühn AV, Steinhoff B. Current findings on the heavy metal content in herbal drugs. Pharmeur Sci Notes 2009;1:37-50. PMID: 19275871Search in Google Scholar

32. Kloke A, Sauerbeck DC, Vetter H. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Nriagu JO, editor. Changing Metal Cycles and Human Health. Dahlem Workshop Reports, Life Sciences Research Report, Vol 28; 20-25 March 1983; Berlin, Grmany. Berlin, Heidelberg: Springer; 1984. p. 131-41.10.1007/978-3-642-69314-4_7Search in Google Scholar

33. Allen SE, editor. Chemical Analysis of Ecological Materials. 2nd ed. Oxford: Blackwell Science Inc.; 1989.Search in Google Scholar

34. Nadgórska-Socha A, Ptasiński B, Kita A. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study. Ecotoxicology 2013;22:1422-34. doi: 10.1007/s10646-013-1129-ySearch in Google Scholar

35. Sarma H, Deka S, Deka H, Saikia RR. Accumulation of heavy metals in selected medicinal plants. Rev Environ Contam Toxicol 2011;214:63-86. doi: 10.1007/978-1-4614-0668-6_4Search in Google Scholar

36. Salgueiro L, Martins AP, Correia H. Raw materials: the importance of quality and safety. A review. Flavour Fragrance J 2010;25:253-71. doi: 10.1002/ffj.1973Search in Google Scholar

37. Konieczyński P, Wesołowski M. Water-extractable magnesium, manganese and copper in leaves and herbs of medicinal plants. Acta Pol Pharm 2012;69:33-9. PMID: 22574504Search in Google Scholar

38. Weber G, Konieczyński P. Speciation of Mg, Mn and Zn in extracts of medicinal plants. Anal Bioanal Chem 2003;375:1067-73. doi: 10.1007/s00216-002-1706-zSearch in Google Scholar

39. Islam MA, Ebihara M. Elemental characterization of Japanese green tea leaves and tea infusion residue by neutroninduced prompt and delayed gamma-ray analysis. Arab J Chem 2017;10(Supp 1):S677-82. doi: 10.1016/j.arabjc.2012.11.008Search in Google Scholar

40. Gallaher RN, Gallaher K, Marshall AJ, Marshall AC. Mineral analysis of ten types of commercially available tea. J Food Compos Anal 2006;19(Suppl):S53-7. doi: 10.1016/j. jfca.2006.02.006Search in Google Scholar

41. Keane B, Collier MH, Shann JR, Rogstad SH. Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci Total Environ 2001;281:63-78. doi: 10.1016/S0048-9697(01)00836-1Search in Google Scholar

42. Kos V, Budic B, Hudnik V, Lobnik F, Zupan M. Determination of heavy metal concentrations in plants exposed to different degrees of pollution using ICP-AES. Anal Bioanal Chem 1996;354:648-52. doi: 10.1007/s0021663540648Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other