Electromagnetic fields at a mobile phone frequency (900 MHz) trigger the onset of general stress response along with DNA modifications in Eisenia fetida earthworms

Open access

Abstract

Eisenia fetida earthworms were exposed to electromagnetic field (EMF) at a mobile phone frequency (900 MHz) and at field levels ranging from 10 to 120 V m-1 for a period of two hours (corresponding to specific absorption rates ranging from 0.13 to 9.33 mW kg-1). Potential effects of longer exposure (four hours), field modulation, and a recovery period of 24 h after two hours of exposure were addressed at the field level of 23 V m-1. All exposure treatments induced significant DNA modifications as assessed by a quantitative random amplified polymorphic DNA-PCR. Even after 24 h of recovery following a two hour-exposure, the number of probe hybridisation sites displayed a significant two-fold decrease as compared to untreated control earthworms, implying a loss of hybridisation sites and a persistent genotoxic effect of EMF. Expression of genes involved in the response to general stress (HSP70 encoding the 70 kDa heat shock protein, and MEKK1 involved in signal transduction), oxidative stress (CAT, encoding catalase), and chemical and immune defence (LYS, encoding lysenin, and MYD, encoding a myeloid differentiation factor) were up-regulated after exposure to 10 and modulated 23 V m-1 field levels. Western blots showing an increased quantity of HSP70 and MTCO1 proteins confirmed this stress response. HSP70 and LYS genes were up-regulated after 24 h of recovery following a two hour-exposure, meaning that the effect of EMF exposure lasted for hours.

1. Witthöft M, Rubin GJ. Are media warnings about the adverse health effects of modern life self-fulfilling? An experimental study on idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF). J Psychosom Res 2013;74:206-12. doi:

2. Hardell L, Carlberg M, Söderqvist F, Mild KH, Morgan LL. Long-term use of cellular phones and brain tumours: increased risk associated with use for ≥10 years. Occup Environ Med 2007;64:626-32. doi:

3. Baldi I, Coureau G, Jaffré A, Gruber A, Ducamp S, Provost D, Lebailly P, Vital A, Loiseau H, Salamon R. Occupational and residential exposure to electromagnetic fields and risk of brain tumors in adults: a case-control study in Gironde, France. Int J Cancer 2011;129:1477-84. doi:

4. Coureau G, Bouvier G, Lebailly P, Fabbro-Peray P, Gruber A, Leffondre K, Guillamo JS, Loiseau H, Mathoulin-Pélissier S, Salamon R, Baldi I. Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med 2014;71:514-22. doi:

5. Tkalec M, Malarić K, Pevalek-Kozlina B. Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. Bioelectromagnetics 2005;26:185-93. doi:

6. Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L, Wei W. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res 2006;602:135-42. doi:

7. Tkalec M, Štambuk A, Šrut M, Malarić K, Klobučar GI. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. Ecotoxicol Environ Saf 2013;90:7-12. doi:

8. Cambier S, Gonzalez P, Durrieu G, Bourdineaud JP. Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 2010;73:312-9. doi:

9. Geffroy B, Ladhar C, Cambier S, Treguer-Delapierre M, Brèthes D, Bourdineaud JP. Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. N a n o t o x i c o l o g y 2 0 1 2 ; 6 : 1 4 4 - 6 0 . d o i : 10.3109/17435390.2011.562328

10. Orieux N, Cambier S, Gonzalez P, Morin B, Adam C, Garnier-Laplace J, Bourdineaud JP. Genotoxic damages in zebrafish submitted to a polymetallic gradient displayed by the Lot River (France). Ecotoxicol Environ Saf 2011;74:974-83. doi:

11. Ladhar C, Geffroy B, Cambier S, Treguer-Delapierre M, Durand E, Brèthes D, Bourdineaud JP. Impact of dietary cadmium sulfide nanoparticles on Danio rerio zebrafish at very low contamination pressure. Nanotoxicology 2014;8:676-85. doi:

12. Dedeh A, Ciutat A, Treguer-Delapierre M, Bourdineaud JP. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 2015;9:71-80. doi:

13. Dedeh A, Ciutat A, Lecroart P, Treguer-Delapierre M, Bourdineaud JP. Cadmium sulfide nanoparticles trigger DNA alterations and modify the bioturbation activity of tubificidae worms exposed through the sediment. Nanotoxicology 2016;10:322-31. doi:

14. Lerebours A, Cambier S, Hislop L, Adam-Guillermin C, Bourdineaud JP. Genotoxic effects of exposure to waterborne uranium, dietary methylmercury and hyperoxia in zebrafish assessed by the quantitative RAPD-PCR method. Mutation Res 2013;755:55-60. doi:

15. Bernard F, Brulle F, Douay F, Lemière S, Demuynck S, Vandenbulcke F. Metallic trace element body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an “exposure/depuration” experimental scheme with field soils. Ecotoxicol Environ Saf 2010;73:1034-45. doi:

16. Bošnjak I, Bielen A, Babić S, Sver L, Popović NT, Strunjak-Perović I, Což-Rakovac R, Klobučar RS. First evidence of the P-glycoprotein gene expression and multixenobiotic resistance modulation in earthworm. Arh Hig Rada Toksikol 2014;65:67-75. doi:

17. Hayashi Y, Engelmann P, Foldbjerg R, Szabó M, Somogyi I, Pollák E, Molnár L, Autrup H, Sutherland DS, Scott- Fordsmand J, Heckmann LH. Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ Sci Technol 2012;46:4166-73. doi:

18. Brulle F, Mitta G, Cocquerelle C, Vieau D, Lemière S, Leprêtre A, Vandenbulcke F. Cloning and real-time PCR testing of 14 potential biomarkers in Eisenia fetida following cadmium exposure. Environ Sci Technol 2006;40:2844-50. doi:

19. Brulle F, Mitta G, Leroux R, Lemière S, Leprêtre A, Vandenbulcke F. The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in Eisenia fetida: a trade-off mechanism? Comp Biochem Physiol C Toxicol Pharmacol 2007;144:334-41. doi:

20. Brulle F, Cocquerelle C, Mitta G, Castric V, Douay F, Leprêtre A, Vandenbulcke F. Identification and expression profile of gene transcripts differentially expressed during metallic exposure in Eisenia fetida coelomocytes. Dev Comp Immunol 2008;32:1441-53. doi:

21. Brulle F, Lemière S, Waterlot C, Douay F, Vandenbulcke F. Gene expression analysis of 4 biomarker candidates in Eisenia fetida exposed to an environmental metallic trace elements gradient: a microcosm study. Sci Total Environ 2011;409:5470-82. doi:

22. Unrine JM, Hunyadi SE, Tsyusko OV, Rao W, Shoults-Wilson WA, Bertsch PM. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ Sci Technol 2010;44:8308-13. doi:

23. Tsyusko OV, Hardas SS, Shoults-Wilson WA, Starnes CP, Joice G, Butterfield DA, Unrine JM. Short-term molecularlevel effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ Pollut 2012;171:249-55. doi:

24. Chen C, Zhou Q, Liu S, Xiu Z. Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere 2011;83:1147-54. doi:

25. Chen C, Xue S, Zhou Q, Xie X. Multilevel ecotoxicity assessment of polycyclic musk in the earthworm Eisenia fetida using traditional and molecular endpoints. Ecotoxicology 2011;20:1949-58. doi:

26. Wu S, Zhang H, Zhao S, Wang J, Li H, Chen J. Biomarker responses of earthworms (Eisenia fetida) exposured to phenanthrene and pyrene both singly and combined in microcosms. Chemosphere 2012;87:285-93. doi:

27. Marjanović AM, Pavičić I, Trošić I. Biological indicators in response to radiofrequency/microwave exposure. Arh Hig Rada Toksikol 2012;63:407-16. doi:

28. Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat 2016;75:85-93. doi:

29. Dasdag S, Akdag MZ, Kizil M, Kizil G, Cakir DU, Yokus B. Effect of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl and malondialdehyde in brain. Electromagn Biol Med 2012;31:67-74. doi:

30. Akdag MZ, Dasdag S, Cakir DU, Yokus B, Kizil G, Kizil M. Do 100 and 500 μT ELF magnetic fields alter beta amyloid protein, protein carbonyl and malondialdehyde in brain? E l e c t r o m a g n B i o l M e d 2 0 1 3 ; 3 2 : 3 6 3 - 7 2 . d o i : 10.3109/15368378.2012.721848

31. Kimura T, Takahashi K, Suzuki Y, Konishi Y, Ota Y, Mori C, Ikenaga T, Takanami T, Saito R, Ichiishi E, Awaji S, Watanabe K, Higashitani A. The effect of high strength static magnetic fields and ionizing radiation on gene expression and DNA damage in Caenorhabditis elegans. Bioelectromagnetics 2008;29:605-14. doi:

32. Blank M, Goodman R. Electromagnetic fields stress living cells. Pathophysiology 2009;16:71-8. doi:

33. Rodríguez de la Fuente AO, Alcocer-González JM, Antonio Heredia-Rojas J, Balderas-Candanosa I, Rodríguez-Flores LE, Rodríguez-Padilla C, Taméz-Guerra RS. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: An in vitro study. Cell Biol Int 2009;33:419-23. doi:

34. Weisbrot D, Lin H, Ye L, Blank M, Goodman R. Effects of mobile phone radiation on growth and development in Drosophila melanogaster. J Cell Biochem 2003;89:48-55.doi:

35. Osera C, Fassina L, Amadio M, Venturini L, Buoso E, Magenes G, Govoni S, Ricevuti G, Pascale A. Cytoprotective response induced by electromagnetic stimulation on SHSY5Y human neuroblastoma cell line. Tissue Eng Part A 2011;17:2573-82. doi:

36. Campisi A, Gulino M, Acquaviva R, Bellia P, Raciti G, Grasso R, Musumeci F, Vanella A, Triglia A. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett 2010;473:52-5. doi:

37. Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G. Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol P l a n t a r u m 2 0 0 6 ; 1 2 8 : 2 8 3 - 8 . d o i : 10.1111/j.1399-3054.2006.00740.x

38. Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G. High frequency (900 MHz) low amplitude (5 V m-1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 2008;227:883-91. doi:

39. Ni S, Yu Y, Zhang Y, Wu W, Lai K, Yao K. Study of oxidative stress in human lens epithelial cells exposed to 1.8 GHz radiofrequency fields. PLoS One 2013;8(8):e72370. doi:

40. Cucurachi S, Tamis WL, Vijver MG, Peijnenburg WJ, Bolte JF, de Snoo GR. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int 2013;51:116-40. doi:

41. Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat 2016;75:116-22. doi:

42. Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 2008;62:104-9. doi:

43. Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology 2009;16:79-88. doi:

44. Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 2009;16:89-102. doi:

45. Duan W, Liu C, Zhang L, He M, Xu S, Chen C, Pi H, Gao P, Zhang Y, Zhong M, Yu Z, Zhou Z. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Radiat Res 2015;183:305-14. doi:

46. Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 2004;112:687-94. PMCID: PMC1241963

47. Yao K, Wu W, Wang K, Ni S, Ye P, Yu Y, Ye J, Sun L. Electromagnetic noise inhibits radiofrequency radiationinduced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol Vis 2008;14:964-9. PMCID: PMC2391079

48. Khaki AA, Tubbs RS, Shoja MM, Rad JS, Khaki A, Farahani RM, Zarrintan S, Nag TC. The effects of an electromagnetic field on the boundary tissue of the seminiferous tubules of the rat: a light and transmission electron microscope study. Folia Morphol 2006;65:188-94. PMID: 16988914

49. Tenorio BM, Jimenez GC, de Morais RN, Peixoto CA, de Albuquerque Nogueira R, da Silva VA Jr. Evaluation of testicular degeneration induced by low-frequency electromagnetic fields. J Appl Toxicol 2012;32:210-8. doi:

50. Shams Lahijani M, Tehrani DM, Sabouri E. Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white leghorn chicken embryo. Electromagnetic Biol Med 2009;28:391-413. doi:

51. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 2009;4:e6446. doi:

52. Xu S, Zhou Z, Zhang L, Yu Z, Zhang W, Wang Y, Wang X, Li M, Chen Y, Chen C, He M, Zhang G, Zhong M. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res 2010;1311:189-96. doi:

53. Ikehara T, Nishisako H, Minami Y, Ichinose Sasaki H, Shiraishi T, Kitamura M, Shono M, Houchi H, Kawazoe K, Minakuchi K, Yoshizaki K, Kinouchi Y, Miyamoto H. Effects of exposure to a time-varying 1.5 T magnetic field on the neurotransmitter-activated increase in intracellular Ca(2+) in relation to actin fiber and mitochondrial functions in bovine adrenal chromaffin cells. Biochim Biophys Acta 2010;1800:1221-30. doi:

54. Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ. Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys 2010;497:82-9. doi:

55. Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach. Free Radical Biol Med 2010;48:579-89. doi:

56. Beaubois E, Girard S, Lallechere S, Davies E, Paladian F, Bonnet P, Ledoigt G, Vian A. Intercellular communication in plants: evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell Environ 2007;30:834-44. doi:

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information


IMPACT FACTOR 2017: 1.117
5-year IMPACT FACTOR: 1.335



CiteScore 2017: 1.24

SCImago Journal Rank (SJR) 2017: 0.341
Source Normalized Impact per Paper (SNIP) 2017: 0.494

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 315 37
PDF Downloads 174 174 25