Antifungal and antiaflatoxigenic activities of coumarinyl thiosemicarbazides against Aspergillus flavus NRRL 3251

Open access

Abstract

The antifungal and antiaflatoxigenic effects of two series of coumarinyl thiosemicarbazides on Aspergillus flavus NRRL 3251 were studied. Fungi were grown in YES medium for 72 h at 29 °C in the presence of 0, 0.1, 1, and 10 μg mL-1 of coumarinyl thiosemicarbazides: one series with substitution in position 7 and another with substitution in position 4 of the coumarin core. Dry mycelia weight determination was used for antifungal activity estimation, while the aflatoxin B1 content in YES media, determined by the dilute and shoot LC-MS/MS technique, was used for the antiaflatoxigenic effect estimation. Standard biochemical assays were used for oxidative status marker (TBARS, SOD, CAT, and GPX) determination in A. flavus NRRL 3251 mycelia. Results show that 7-substituted-coumarinyl thiosemicarbazides possess a better antifungal and antiaflatoxigenic activity than 4-substituted ones. The most prominent substituted compound was the compound 3, N-(4-chlorophenyl)-2-(2-((4-methyl-2-oxo-2H-chromen-7-yl)oxy)acetyl)hydrazine-1-carbothioamide, which completely inhibited aflatoxin production at the concentration of 10 μg mL-1. Oxidative stress response of A. flavus exposed to the selected compounds points to the modulation of oxidative stress as a possible reason of aflatoxin production inhibition.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Degola F Morcia C Bisceglie F Mussi F Tumino G Ghizzoni R Pelosi G Terzi V Buschini A Restivo FM Lodi T. In vitro evaluation of the activity of thiosemicarbazone derivatives against mycotoxigenic fungi affecting cereals. Int J Food Microbiol 2015;200:104-11. doi:

    • Crossref
    • Export Citation
  • 2. Zani C Restivo FM Carcelli M Feretti D Pelosi G Rogolino D Degola F Galati S Bisceglie F Buschini A. A biotechnological approach for the development of new antifungal compounds to protect the environment and the human health. J Public Health Res 2015;4:613. doi:

    • Crossref
    • Export Citation
  • 3. Battilani P Toscano P Van der Fels-Klerx HJ Moretti A Camardo Leggieri M Brera C Rortais A Goumperis T Robinson T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep 2016;12;6:24328. doi:

    • Crossref
    • Export Citation
  • 4. Radulović N Stojanović G Vukićević R Dekić V Dekić B Palić R. New 34-annelated coumarin derivatives: synthesis antimicrobial activity antioxidant capacity and molecular modeling. Monatsh Chem Chem Mon 2006;137:1477-86. doi:

    • Crossref
    • Export Citation
  • 5. Soltani S Dianat S Sardari S. Forward modeling of the coumarin antifungals; SPR/SAR based perspective. Avicenna J Med Biotechnol 2009;1(2):95-103. PMC 3558124

  • 6. Pelosi G. Thiosemicarbazone metal complexes: From structure to activity. The Open Crystallography Journal 2010;3:16-28 [displayed 10 February 2017]. Avaliable at http://benthamopen.com/contents/pdf/TOCRYJ/TOCRYJ-3-16.pdf

  • 7. Pishawikar AS More HN. Synthesis docking and in-vitro screening of mannich bases of thiosemicarbazide for antifungal activity. Arabian Journal of Chemistry 2013 [displayed 10 February 2017]. Avaliable at http://www.sciencedirect.com/science/article/pii/S1878535213003560

  • 8. Cardenas-Ortega NC Perez-Gonzalez C Zavala-Sanchez MA Hernandez-Ramirez AB Perez-Gutierrez S. Antifungal activity of seselin in protecting stored maize from Aspergillus flavus. Asian J Plant Sci 2007;6:712-4. doi:

    • Crossref
    • Export Citation
  • 9. Mishra BB Singh DD Kishore N Tiwari VK Tripathi V. Antifungal constituents isolated from the seeds of Aegle marmelos. Phytochemistry 2010;71:230-4. doi:

    • Crossref
    • Export Citation
  • 10. Šarkanj B Molnar M Čačić M Gille L. 4-Methyl-7- hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem 2013;139:488-95. doi:

    • Crossref
    • Export Citation
  • 11. Guerra FQS Aquino de Araújo RS Pereira de Sousa J de Oliveira Pereira F Mendonça-Junior FJB Barbosa-Filho JM de Oliveira Lima E. Evaluation of antifungal activity and mode of action of new coumarin derivative 7-Hydroxy-6- nitro-2H-1-benzopyran-2-one against Aspergillus spp. Evid Based Complement Alternat Med 2015;2015:925096. doi:

    • Crossref
    • Export Citation
  • 12. Chanda A Roze LV Kang S Artymovich KA Hicks GR Raikhel NV Calvo AM Linz JE. A key role for vesicles in fungal secondary metabolism. Proc Natl Acad Sci USA 2009;106:19533-8. doi:

    • Crossref
    • Export Citation
  • 13. Chanda A Roze LV Linz JE. A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. Eukaryot Cell 2010;9:1724-7. doi:

    • Crossref
    • Export Citation
  • 14. Yu J. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins 2012;4:1024-57. doi:

    • Crossref
    • Export Citation
  • 15. Angelova MB Pashova SB Spasova BK Vassilev S V Slokoska LS. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 2005;109:150-8. doi:

    • Crossref
    • Export Citation
  • 16. Reverberi M Fabbri AA Zjalic S Ricelli A Punelli F Fanelli C. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl Microbiol Biotechnol 2005;69:207-15. doi:

    • Crossref
    • Export Citation
  • 17. Esworthy RS Chu FF Doroshow JH. Analysis of glutathionerelated enzymes. In: Costa LG Hodgson E Lawrence DA Reed DJ Greenlee WF editors. Current Protocols in Toxicology. Chapter 7. Assessment of the activity of antioxidant enzymes. New York (NY): John Wiley & Sons; 2005. p. 7.1.1.-7.1.32.

  • 18. Lushchak VI Gospodaryov DV. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int 2005;29:187-92. doi:

    • Crossref
    • Export Citation
  • 19. Holmes RA Boston RS Payne GA. Diverse inhibitors of aflatoxin biosynthesis. Appl Microbiol Biotechnol 2008;78:559-72. doi:

    • Crossref
    • Export Citation
  • 20. Jayashree T Subramanyam C. Oxidative stress a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic Biol Med 2000;29:981-5. doi:

    • Crossref
    • Export Citation
  • 21. Reverberi M Ricelli A Zjalic S Fabbri AA Fanelli C. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 2010;87:899-911. doi:

    • Crossref
    • Export Citation
  • 22. Reverberi M Punelli M Smith CA Zjalić S Scarpari M Scala V Cardinali G Aspite N Pinzari F Payne GA Fabbri AA Fanelli C. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS One 2012;7:e48097. [displayed 19 October 2012]. Available at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048097

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1.606

CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 378 285 15
PDF Downloads 141 98 1