Open Access

Genetic polymorphisms of the CYP1A1, GSTM1, and GSTT1 enzymes and their influence on cardiovascular risk and lipid profile in people who live near a natural gas plant


Cite

1. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep 2014;16:479. doi: 10.1007/s11886-014-0479-2Search in Google Scholar

2. Sayols-Baixeras S, Lluís-Ganella C, Lucas G, Elosua R. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet 2014;7:15-32. doi: 10.2147/TACG.S35301Search in Google Scholar

3. Marinković N, Pašalić D, Potočki S. Polymorphisms of genes i n v o l v e d i n p o l y c y c l i c a r o m a t i c hydrocarbons’biotransformation and atherosclerosis. Biochem Med 2013;23:255-65. doi: 10.11613/BM.2013.032Search in Google Scholar

4. Choi H, Harrison R, Komulainen H, Juana M, Delgado Saborit JM. Polycyclic aromatic hydrocarbons. In: WHO Guidelines for Indoor Air Quality: Selected Pollutants (ED WHO). Geneva: World Health Organization; 2010. p. 289-345.Search in Google Scholar

5. St. Helen G, Goniewicz ML, Dempsey D, Wilson M, Jacob P, Benowitz NL. Exposure and kinetics of polycyclic aromatic hydrocarbons (PAHs) in cigarette smokers. Chem Res Toxicol 2012;25:952-64. doi: 10.1021/tx300043kSearch in Google Scholar

6. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS. Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann N Y Acad Sci. 2001;947:271-92; discussion 292-3. doi: 10.1111/ j.1749-6632.2001.tb03949.xSearch in Google Scholar

7. Curfs DM, Knaapen AM, Pachen DM, Gijbels MJ, Lutgens E, Smook ML, Kockx MM, Daemen MJ, van Schooten FJ. Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. FASEB J 2005;19:1290-2. doi: 10.1096/ fj.04-2269fjeSearch in Google Scholar

8. Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002;3:481-90. doi: 10.2174/1389200023337171Search in Google Scholar

9. Pushparajah DS, Umachandran M, Plant KE, Plant N, Ioannides C. Up-regulation of the glutathione S- ransferase system in human liver by polycyclic aromatic hydrocarbons; comparison with rat liver and lung. Mutagenesis 2008;23:299-308. doi: 10.1093/mutage/gen012Search in Google Scholar

10. Larsen MC, N’Jai AU, Alexander DL, Rondelli CM, Forsberg EC, Czuprynski CJ, Jefcoate CR. Cyp1b1-mediated suppression of lymphoid progenitors in bone marrow by polycyclic aromatic hydrocarbons coordinately impacts spleen and thymus: a selective role for the Ah Receptor. Pharmacol Res Perspect 2016;4:e00245. doi: 10.1002/ prp2.245Search in Google Scholar

11. Spurr NK, Gough AC, Stevenson K, Wolf CR. Msp-1 polymorphism detected with a cDNA probe for the P-450 I family on chromosome 15. Nucleic Acids Res 1987;15:5901. PMCID: PMC30604510.1093/nar/15.14.59013060452886977Search in Google Scholar

12. Hayashi SI, Watanabe J, Nakachi K, Kawajiri K. PCR detection of an A/G polymorphism within exon 7 of the CYP1A1 gene. Nucleic Acids Res 1991;19:4797. PMCID: PMC32875910.1093/nar/19.17.47973287591891387Search in Google Scholar

13. Crofts F, Cosma GN, Currie D, Taioli E, Toniolo P, Garte SJ. A novel CYP1A1 gene polymorphism in African-Americans. Carcinogenesis 1993;14:1729-31. doi: 10.1093/ carcin/14.9.1729Search in Google Scholar

14. Cascorbi I, Brockmöller J, Roots I. A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res 1996;56:4965-9. PMID: 8895751Search in Google Scholar

15. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005;45:51-88. doi: 10.1146/ annurev.pharmtox.45.120403.095857Search in Google Scholar

16. Masetti S, Botto N, Manfredi S, Colombo MG, Rizza A, Vassalle C, Clerico A, Biagini A, Andreassi MG. Interactive effect of the glutathione S-transferase genes and cigarette smoking on occurrence and severity of coronary artery risk. J Mol Med (Berl) 2003;81:488-94. doi: 10.1007/s00109-003-0448-5Search in Google Scholar

17. World Healh Organization 1999. Definition, diagnosis and clasiffication of diabetes mellitus and its complications [displayed 6 March 2017]. Available at https://www.staff.ncl.ac.uk/philip.home/who_dmc.htm/Search in Google Scholar

18. Framingham Heart Study. A Project of the National Heart, Lung and Blood Institute and Boston University [displayed 6 March 2017]. Available at http://www.framinghamheartstudy.orgSearch in Google Scholar

19. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 2002;106;3143-421. PMID: 1248596610.1161/circ.106.25.3143Search in Google Scholar

20. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215. PMCID: PMC33476510.1093/nar/16.3.12153347653344216Search in Google Scholar

21. Li Y, Millikan RC, Bell DA, Cui L, Tse CK, Newman B, Conway K. Cigarette smoking, cytochrome P4501A1 polymorphisms, and breast cancer among African-American and white women. Breast Cancer Res 2004;6:R460-73. doi: 10.1186/bcr814Search in Google Scholar

22. Gaikovitch EA. Genotyping of the polymorphic drug metabolizing enzymes cytochrome P450 2D6 and 1A1, and N-acetyltransferase 2 in a Russian sample [PhD thesis] [displayed 6 March 2017]. Available at http://edoc.hu-berlin.de/dissertationen/gaikovitch-elena-a-2003-07-14/PDF/Gaikovitch.pdfSearch in Google Scholar

23. Žuntar I, Petlevski R, Dodig S, Popović-Grle S. GSTP1, GSTM1 and GSTT1 genetic polymorphisms and total serum GST concentration in stable male COPD. Acta Pharm 2014:64;117-29. doi: 10.2478/acph-2014-0003Search in Google Scholar

24. Mandić S, Horvat V, Marczi S, Lukić I, Galić J. Association study of cytochrome P450 1A1*2A polymorphism with prostate cancer risk and aggressiveness in Croatians. Coll Antropol 2014;38:141-6. PMID: 24851608Search in Google Scholar

25. Santl Letonja M, Letonja M, Ikolajević-Starčević JN, Petrović D. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with carotid atherosclerosis in patients with diabetes mellitus type 2. Int Angiol 2012;31:33-41. PMID: 22330623Search in Google Scholar

26. Manfredi S, Federici C, Picano E, Botto N, Rizza A, Andreassi MG. GSTM1, GSTT1 and CYP1A1 detoxification gene polymorphisms and susceptibility to smoking-related coronary artery disease: a case-only study. Mutat Res 2007;621:106-12. doi: 10.1016/j.mrfmmm.2007.02.014Search in Google Scholar

27. Taspinar M, Aydos S, Sakiragaoglu O, Duzen IV, Yalcinkaya A, Oztuna D, Bardakci H, Tutar E, Sunguroglu A. Impact of genetic variations of the CYP1A1, GSTT1, and GSTM1 genes on the risk of coronary artery disease. DNA Cell Biol 2012;31:211-8. doi: 10.1089/dna.2011.1252Search in Google Scholar

28. Bailón-Soto CE, Galaviz-Hernández C, Lazalde-Ramos BP, Hernández-Velázquez D, Salas-Pacheco J, Lares-Assef I, Sosa-Macías M. Influence of CYP1A1*2C on high triglyceride levels in female Mexican indigenous Tarahumaras. Arch Med Res 2014;45:409-16. doi: 10.1016/j. arcmed.2014.05.007Search in Google Scholar

29. Almeida S, Zandoná MR, Franken N, Callegari-Jacques SM, Osório-Wender MC, Hutz MH. Estrogen-metabolizing gene polymorphisms and lipid levels in women with different hormonal status. Pharmacogenomics J 2005;5:346-51. doi: 10.1038/sj.tpj.6500329Search in Google Scholar

30. Quan J, Yahata T, Tamura N, Nagata H, Tanaka K. Relationship between single nucleotide polymorphisms in CYP1A1 and CYP1B1 genes and the bone mineral density and serum lipid profiles in postmenopausal Japanese women taking hormone therapy. Menopause 2009;16:171-6. doi: 10.1097/gme.0b013e31817ed24fSearch in Google Scholar

31. Maciel SS, Pereira Ada C, Silva GJ, Rodrigues MV, Mill JG, Krieger JE. Association between glutathione S-transferase polymorphisms and triglycerides and HDL-cholesterol. Atherosclerosis 2009;206:204-8. doi: 10.1016/j. atherosclerosis.2009.02.011Search in Google Scholar

32. Pinheiro DS, Rocha Filho CR, Mundim CA, Júnior Pde M, Ulhoa CJ, Reis AA, Ghedini PC. Evaluation of glutathione S-transferase GSTM1 and GSTT1 deletion polymorphisms on type-2 diabetes mellitus risk. PLoS One 2013;8(10):e76262. doi: 10.1371/journal.pone.0076262Search in Google Scholar

33. Amer MA, Ghattas MH, Abo-Elmatty DM, Abou-El-Ela SH. Influence of glutathione S-transferase polymorphisms on type-2 diabetes mellitus risk. Genet Mol Res 2011;10:3722-30. doi: 10.4238/2011.October.31.14Search in Google Scholar

34. Paumi CM, Smitherman PK, Townsend AJ, Morrow CS. Glutathione S-transferases (GSTs) inhibit transcriptional activation by the peroxisomal proliferator-activated receptor gamma (PPAR gamma) ligand, 15-deoxy-delta 12,14prostaglandin J2 (15-d-PGJ2). Biochemistry 2004;43:2345-52. doi: 10.1021/bi035936+Search in Google Scholar

35. Fajasand L, Auwerx J. Peroxisome Proliferator-Activated Receptor γ and transcriptional control of adipgenesis and metabolism. In: Bray BA, Bouchard C, editors. Handbook of obesity etiology and pathophysiology. 2nd ed. New York: CRC Press; 2003. p. 559-87.Search in Google Scholar

36. Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med 2013;23:154-71. doi: 10.11613/BM.2013.020 Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other