Age and sex differences in genome damage between prepubertal and adult mice after exposure to ionising radiation

Ranko Stojković 1 , Aleksandra Fucic 2 , Dušica Ivanković 1 , Zoran Jukić 3 , 4 , Petra Radulović 5 , Josip Grah 4 , 6 , Nenad Kovačević 7 , Lovro Barišić 7 ,  and Božo Krušlin 5
  • 1 Ruđer Bošković Institute, Zagreb, Croatia
  • 2 Institute for Medical Research and Occupational Health, Zagreb, Ksaverska c 2, Croatia
  • 3 Zagreb, General Hospital “Nova Gradiška”, Nova Gradiška Croatia
  • 4 School of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
  • 5 Clinical Hospital Centre “Sestre Milosrdnice”, Zagreb, Croatia
  • 6 University Hospital “Zagreb” Croatia
  • 7 University Hospital “Zagreb”, Zagreb, Croatia

Abstract

The mechanisms that lead to sex and age differences in biological responses to exposure to ionising radiation and related health risks have still not been investigated to a satisfactory extent. The significance of sex hormones in the aetiology of radiogenic cancer types requires a better understanding of the mechanisms involved, especially during organism development. The aim of this study was to show age and sex differences in genome damage between prepubertal and adult mice after single exposure to gamma radiation. Genome damage was measured 24 h, 48 h, and 72 h after exposure of 3-week and 12-week old BALB/CJ mice to 8 Gy of gamma radiation using an in vivo micronucleus assay. There was a significantly higher genome damage in prepubertal than in adult animals of both sexes for all sampling times. Irradiation caused a higher frequency of micronuclei in males of both age groups. Our study confirms sex differences in the susceptibility to effects of ionising radiation in mice and is the first to show that such a difference occurs already at prepubertal age.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Singh VK, Romaine PL, Newman VL. Biologics as countermeasures for acute radiation syndrome: where are we now? Expert Opin Biol Ther 2015;15:465-71. doi:

    • Crossref
    • Export Citation
  • 2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Scientific Annexes. Vol. II Scientific Annex B New York: United Nations; 2013.

  • 3. Kovalchuk O, Ponton A, Filkowski J, Kovalchuk I. Dissimilar genome response to acute and chronic low-dose radiation in male and female mice. Mutat Res 2004;550:59-72. DOI: 10.1016/j.mrfmmm.2004.02.007

  • 4. Fucic A, Gamulin M. Interaction between ionizing radiation and estrogen: what we are missing? Med Hypotheses 2011;77:966-9. doi:

    • Crossref
    • Export Citation
  • 5. Suman S, Johnson MD, Fornace AJ Jr., Datta K. Exposure to ionizing radiation causes long-term increase in serum estradiol and activation of PI3K-Akt signaling pathway in mouse mammary gland. Int J Radiat Oncol Biol Phys 2012;84:500-7. doi:

    • Crossref
    • Export Citation
  • 6. Hyodo H, Ishiguro H, Tomita Y, Takakura H, Koike T, Shimizu T, et al. Decreased serum testosterone levels in long-term adult survivors with fatty liver after childhood stem cell transplantation. Biol Blood Marrow Transplant 2012;18:1119-27. doi:

    • Crossref
    • Export Citation
  • 7. Fucic A, Gamulin M, Ferencic Z, Rokotov DS, Katic J, Bartonova A, Lovasic IB, Merlo DF. Lung cancer and environmental chemical exposure: a review of our current state of knowledge with reference to the role of hormones and hormone receptors as an increased risk factor for developing lung cancer in man. Toxicol Pathol 2010;38:849-55. doi:

    • Crossref
    • Export Citation
  • 8. Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta 2011;1815:115-33. PubMed doi:

    • Crossref
    • Export Citation
  • 9. Tanaka Y, Sasaki M, Kaneuchi M, Fujimoto S, Dahiya R. Estrogen receptor alpha polymorphisms and renal cell carcinoma: a possible risk. Mol Cell Endocrinol 2003;202:109-16. doi:

    • Crossref
    • Export Citation
  • 10. Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006;20:197-209. doi:

    • Crossref
    • Export Citation
  • 11. Newman MR, Sykes PJ, Blyth BJ, Bezak E, Lawrence MD, Morel KL, Ormsby RJ. The methylation of DNA repeat elements is sex-dependent and temporally different in response to X radiation in radiosensitive and radioresistant mouse strains. Radiat Res 2014;181:65-75. doi:

    • Crossref
    • Export Citation
  • 12. Antwih DA, Gabbara KM, Lancaster WD, Ruden DM, Zielske SP. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 2013;8:839-48. doi:

    • Crossref
    • Export Citation
  • 13. Imaoka T, Nishimura M, Iizuka D, Nishimura Y, Ohmachi Y, Shimada Y. Pre- and postpubertal irradiation induces mammary cancers with distinct expression of hormone receptors, ErbB ligands, and developmental genes in rats. Mol Carcinog 2011;50:539-52. doi:

    • Crossref
    • Export Citation
  • 14. Davis TA, Clarke TK, Mog SR, Landauer MR. Subcutaneous administration of genistein prior to lethal irradiation supports multilineage, hematopoietic progenitor cell recovery and survival. International journal of radiation biology. 2007;83:141-51. doi:

    • Crossref
    • Export Citation
  • 15. Grebeniuk AN, Bykov VN, Miasnikov VA, Zatsepin VV, Aksenova NV. [The experimental evaluation of antiradiation effectiveness of beta-estradiol on survival rates and bone marrow hemopoiesis of X-ray irradiated mice, in Russian]. Radiats Biol Radioecol 2012;52:175-80. PMID: 22690580.

  • 16. Salama S, Diaz-Arrastia C, Patel D, Botting S, Hatch S. 2-Methoxyestradiol, an endogenous estrogen metabolite, sensitizes radioresistant MCF-7/FIR breast cancer cells through multiple mechanisms. Int J Radiat Oncol Biol Phys 2011;80:231-9. doi:

    • Crossref
    • Export Citation
  • 17. Shao C, Folkard M, Held KD, Prise KM. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation. BMC Cancer 2008;8:184. doi:

    • Crossref
    • Export Citation
  • 18. Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D, Carver BS, Chen Y, Watson PA, Shah NP, Fujisawa S, Goglia AG, Gopalan A, Hieronymus H, Wongvipat J, Scardino PT, Zelefsky MJ, Jasin M, Chaudhuri J, Powell SN, Sawyers CL. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013;3:1245-53. doi:

    • Crossref
    • Export Citation
  • 19. Filchenkov GN, Popoff EH, Naumov AD. The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins. J Environ Radioact 2014;127:182-90. doi:

    • Crossref
    • Export Citation
  • 20. Bruheim K, Svartberg J, Carlsen E, Dueland S, Haug E, Skovlund E, Tveit KM, Guren MG. Radiotherapy for rectal cancer is associated with reduced serum testosterone and increased FSH and LH. Int J Radiat Oncol Biol Phys 2008;70:722-7. doi:

    • Crossref
    • Export Citation
  • 21. Mantovani A, Fucic A. Puberty dysregulation and increased risk of disease in adult life: possible modes of action. Reprod Toxicol 2014;44:15-22. doi:

    • Crossref
    • Export Citation
  • 22. Fucic A, Brunborg G, Lasan R, Jezek D, Knudsen LE, Merlo DF. Genomic damage in children accidentally exposed to ionizing radiation: a review of the literature. Mutat Res 2008;658:111-23. doi:

    • Crossref
    • Export Citation
  • 23. Tang J, Fernandez-Garcia I, Vijayakumar S, Martinez-Ruis H, Illa-Bochaca I, Nguyen DH, Mao JH, Costes SV, Barcellos-Hoff MH. Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors. Stem Cells 2014;32:649-61. doi:

    • Crossref
    • Export Citation
  • 24. Dygalo NN, Sakharov DG, Shishkina GT. Kortikosteron i testosteron v krovi vzroslykh krys: effekty nizkikh doz i sroka deistviia ioniziruiushchei radiatsii v period vnutriutrobnogo razvitiia [Corticosterone and testosterone in the blood of adult rats: the effects of low doses and the times of the action of ionizing radiation during intrauterine development, in Russian]. Radiats Biol Radioecol 1997;37:377-81. PMID: 9244526.

  • 25. Baquedano MS, Saraco N, Berensztein E, Pepe C, Bianchini M, Levy E, Goñi J, Rivarola MA, Belgorosky A. Identification and developmental changes of aromatase and estrogen receptor expression in prepubertal and pubertal human adrenal tissues. J Clin Endocrinol Metab 2007;92:2215-22. doi:

    • Crossref
    • Export Citation
  • 26. U.S. Environmental Protection Agency (US EPA). Radiogenic Cancer Risk Models and Projections for the U.S. Population. Washington: U.S. Environmental Protection Agency Office of Radiation and Indoor Air; 2011.

  • 27. Hayashi M, Tice RR, MacGregor JT, Anderson D, Blakey DH, Kirsh-Volders M, Oleson FB Jr, Pacchierotti F, Romagna F, Shimada H, Sutou S, Vannier B. In vivo rodent erythrocyte micronucleus assay. Mutat Res 1994;312:293-304. doi:

    • Crossref
    • Export Citation
  • 28. Liu L, Liu Y, Ni G, Liu S. Flow cytometric scoring of micronucleated reticulocytes as a possible high-throughput radiation biodosimeter. Environ Mol Mutagen 2010;51:215-21. doi:

    • Crossref
    • Export Citation
  • 29. Li MJ, Wang WW, Chen SW, Shen Q, Min R. Radiation dose effect of DNA repair-related gene expression in mouse white blood cells. Med Sci Monit 2011;17:BR290-7. doi:

    • Crossref
    • Export Citation
  • 30. Maurya DK, Devasagayam TP. Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice. Cancer Biother Radiopharm 2013;28:51-7. doi:

    • Crossref
    • Export Citation
  • 31. Mackova NO, Fedorocko P. Recovery of peripheral blood cells in irradiated mice pretreated with bacterial extract IRS-19. Physiol Res 2000;49:703-10. PMID: 11252537

  • 32. Linden MW JM, Cherina S. Haematopoietic and lymphoid tissues, comparative anatomy and histology. In: Treuting PM, Dintzis SM, Liggitt D, Frevert CW, editor. Comparative Anatomy and Histology A Mouse and Human Atlas. Amsterdam: Elsevier; 2012.

  • 33. Dertinger SD, Tsai Y, Nowak I, Hyrien O, Sun H, Bemis JC, Torous DK, Keng P, Palis J, Chen Y. Reticulocyte and micronucleated reticulocyte responses to gamma irradiation: dose-response and time-course profiles measured by flow cytometry. Mutat Res 2007;634:119-25. doi:

    • Crossref
    • Export Citation
  • 34. Nair GG, Nair CK. Radioprotective effects of gallic acid in mice. Biomed Res Int 2013;2013:953079. doi:

    • Crossref
    • Export Citation
  • 35. Hudson D, Kovalchuk I, Koturbash I, Kolb B, Martin OA, Kovalchuk O. Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals. Aging (Albany NY) 2011;3:609-20. doi:

    • Crossref
    • Export Citation
  • 36. Utsuyama M, Hirokawa K. Radiation-induced-thymic lymphoma occurs in young, but not in old mice. Exp Mol Pathol 2003;74:319-25. doi:

    • Crossref
    • Export Citation
  • 37. Grande T, Bueren JA. Involvement of the bone marrow stroma in the residual hematopoietic damage induced by irradiation of adult and young mice. Exp Hematol 1994;22:1283-7. PMID: 7957714

  • 38. Nikkels PG, de Jong JP, Ploemacher RE. Radiation sensitivity of hemopoietic stroma: long-term partial recovery of hemopoietic stromal damage in mice treated during growth. Radiat Res 1987;109:330-41. PMID: 3809402

  • 39. Brenner DJ, Hall EJ. Computed tomography - an increasing source of radiation exposure. New Engl J Med 2007;357:2277-84. doi:

    • Crossref
    • Export Citation
  • 40. Sorensen KJ, Zetterberg LA, Nelson DO, Grawe J, Tucker JD. The in vivo dose rate effect of chronic gamma radiation in mice: translocation and micronucleus analyses. Mutat Res 2000;457:125-36. doi:

    • Crossref
    • Export Citation
  • 41. Pogribny I, Raiche J, Slovack M, Kovalchuk O. Dosedependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 2004;320:1253-61. doi:

    • Crossref
    • Export Citation
  • 42. Ilnytskyy Y, Zemp FJ, Koturbash I, Kovalchuk O. Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem Biophys Res Commun 2008;377:41-5. doi:

    • Crossref
    • Export Citation
  • 43. Dobrzynska MM. DNA damage in organs of female and male mice exposed to nonylphenol, as a single agent or in combination with ionizing irradiation: a comet assay study. Mutat Res Genet Toxicol Environ Mutagen 2014;772:14-9. doi:

    • Crossref
    • Export Citation
  • 44. Davis TA, Mungunsukh O, Zins S, Day RM, Landauer MR. Genistein induces radioprotection by hematopoietic stem cell quiescence. Int J Radiat Biol 2008;84:713-26. doi:

    • Crossref
    • Export Citation
  • 45. Zhou Y, Mi MT. Genistein stimulates hematopoiesis and increases survival in irradiated mice. J Radiat Res 2005;46:425-33. PMID: 16394633

  • 46. Lebedev VG, Moroz BB, Vorotnikova TV, Deshevoi Iu B. Issledovanie mekhanizma formirovaniia radiorezistentnogo sostoianiia sistemy krovetvoreniia pod deistviem dietilstill’bstrola [Mechanism of radioresistance of the hematopoietic system after treatment with diethylstilbestrol in Russian]. Radiats Biol Radioecol 1994;34:565-71. PMID: 7951885

  • 47. Ricoul M, Dutrillaux B. Hyper-radiosensibilite chromosomique des souris en fin de gestation [Chromosome hyper-radiosensitivity in mice at the end of pregnancy, in French]. C R Acad Sci III 1991;312:635-9. PMID: 1913237

  • 48. MacLusky NJ, Chaptal C, McEwen BS. The development of estrogen receptor systems in the rat brain and pituitary: postnatal development. Brain Res 1979;178:143-60. PMID: 497857

  • 49. Azria D, Larbouret C, Cunat S, Ozsahin M, Gourgou S, Martineau P, Evans DB, Romieu G, Pujol P, Pèlegrin A. Letrozole sensitizes breast cancer cells to ionizing radiation. Breast Cancer Res 2005;7:R156-63. doi:

    • Crossref
    • Export Citation
  • 50. Zhao X, Zhang Q. [Clinical efficacy of letrozole in boys with idiopathic central precocious puberty, in Chinese]. Zhongguo Dang Dai Er Ke Za Zhi 2014;16:397-400. doi:

    • Crossref
    • Export Citation
  • 51. Ankarberg C, Norjavaara E. Diurnal rhythm of testosterone secretion before and throughout puberty in healthy girls: correlation with 17beta-estradiol and dehydroepiandrosterone sulfate. J Clinl Endocrinol Metab 1999;84:975-84. doi:

    • Crossref
    • Export Citation
  • 52. Khairullah A, Klein LC, Ingle SM, May MT, Whetzel CA, Susman EJ, Paus T. Testosterone trajectories and reference ranges in a large longitudinal sample of male adolescents. PLoS One 2014;9(9):e108838. doi:

    • Crossref
    • Export Citation
  • 53. Courant F, Aksglaede L, Antignac JP, Monteau F, Sorensen K, Andersson AM, Skakkebaek NE, Juul A, Bizec BL. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 2010;95:82-92. doi:

    • Crossref
    • Export Citation
  • 54. Belgorosky A, Rivarola MA. Progressive increase in nonsex hormone-binding globulin-bound testosterone and estradiol from infancy to late prepuberty in girls. J Clin Endocrinol Metab 1988;67:234-7. doi:

    • Crossref
    • Export Citation
OPEN ACCESS

Journal + Issues

All articles are published under the CC-BY licence.

Search