Phytoremediation potential of wild plants growing on soil contaminated with heavy metals

Vladica Čudić 1 , Dragoslava Stojiljković 2 ,  and Aleksandar Jovović 2
  • 1 PWW d.o.o. 25. maj 65b, 18000 Niš, Serbia
  • 2 University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

Abstract

Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants’ phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Mühlbachová G, Száková J, Tlustoš P. The heavy metal availability in long-term polluted soils as affected by EDTA and alfalfa meal treatments. Plant Soil Environ 2012;58:551-6. [displayed 4 August 2016]. Available at http://www.agriculturejournals.cz/publicFiles/78767.pdf

  • 2. Vidaković-Cifrek Ž, Tkalec M, Šikić S, Tolić S, Lepeduš H, Pevalek-Kozlina B. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper. Arh Hig Rada Toksikol 2015;66:141-52. doi:

    • Crossref
    • Export Citation
  • 3. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003;50:775-80. doi:

    • Crossref
    • Export Citation
  • 4. Freitas H, Prasad MNV, Pratas J. Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental implications. Environ Int 2004;30:65-72. doi:

    • Crossref
    • Export Citation
  • 5. Del Rio-Celestino M, Font R, Moreno-Rojas R, De Haro- Bailon A. Uptake of lead and zinc by wild plants growing on contaminated soils. Ind Crop Prod 2006;24:230-37. doi:

    • Crossref
    • Export Citation
  • 6. Moors HME, DijkemaPJG. Embedded industrial production systems: Lessons from waste management in zinc production. Technol Forecast Soc 2006;73:250-65.doi:

    • Crossref
    • Export Citation
  • 7. Bozkurt S. Assessment of the Long-Term Transport Processes and Chemical Evolution in Waste Deposits. [PhD thesis]. Stockholm: Royal Institute of Technology; 2000.

  • 8. Bolan N, Kunhikrishnanc A, Thangarajana R, Kumpiened J, Parke J, Makinof T, Kirkhamg BM, Scheckelh K. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? J Hazard Mater 2014;266:141-66. doi:

    • Crossref
    • Export Citation
  • 9. Rosselli W, Keller C, Boschi K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 2003;256:265-72. doi:

    • Crossref
    • Export Citation
  • 10. Madejón P, Murillo JM, Marañón T, Cabrera F, López R. Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcollar mine spill (SW Spain). Sci Total Environ 2002;290:105-20. doi:

    • Crossref
    • Export Citation
  • 11. Yoon J, Cao X, Zhou Q, Ma QL. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 2006;368:456-64. doi:

    • Crossref
    • Export Citation
  • 12. ZayedМА, Terry N. Chromium in the environment: factors affecting biological remediation. Plant Soil 2003;249:139-56. doi:

    • Crossref
    • Export Citation
  • 13. Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metal elements: a review of their distribution, ecology, and phytochemistry. Biorecovery 1989;1:81-126.

  • 14. Antonkiewicz J, Para A. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. Int J Phytoremediation 2016;18:245-50. doi:

    • Crossref
    • Export Citation
  • 15. Robinson B, Schulin R, Nowak B, Roulier S, Menon M, Clothier B, Green S, Mills T. Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 2006;80:221-34.

  • 16. España-Gamboa E, Mijangos-Cortes J, Barahona-Perez L, Dominguez-Maldonado J, Hernandez-Zarate G, Alzate- GaviriaLj. Vinasses: characterization and treatments. Waste Manag Res 2011;29:1235-50. doi:

    • Crossref
    • Export Citation
  • 17. Pulford ID, Watson C. Phytoremediation of heavy metal contaminated land by trees - a review. Environ Int 2003;29:529-40. doi:

    • Crossref
    • Export Citation
  • 18. Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson MN, Mosca G. Phytoremediation trials on metal- and arseniccontaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 2009;157:887-94. doi 10.1016/j.envpol.2008.11.003

  • 19. Obernberger I, Supancic K. Possibilities of ash utilisation from biomass combustion plants. In: Proceedings of the 17th European Biomass Conference & Exhibition, From Research to Industry and Markets; 29 June - 3 July 2009; Hamburg, Germany. Florence: ETA-Florence Renewable Energies; 2009. p. 2373-84.

  • 20. Van Eijk RJ, Obernberger I, Supancic K. Options for increased utilization of ash from biomass combustion and co-firing, 30102040-PGR/R&E 11-2142, IEA Bioenergy Task 32, Deliverable D4, 2012. [displayed 05 May 2014]. Available at http://www.ieabcc.nl/publications/Ash_Utilization_KEMA.pdf

  • 21. Obernberger I, Brunner T, Bärnthaler G. Chemical properties of solid biofuels - significance and impact. Biomass Bioenerg 2006;30:973-82. doi:

    • Crossref
    • Export Citation
  • 22. JovanovićLj, Marković M, Stojiljković D, Radovanović M, Cupać S, Despotović S, Ilić S, Drazić D, Bojović S. Usage of crops and wild plants growing on polluted soil as an energy source. In: Procceeding of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection; 10-14 May 2004; Roma, Italy 2004. ETA-Florence, Italy and WIPMunich, Germany 2004. p. 2529-33.

  • 23. Avramov L, Nakalamić A, Todorović N, Petrović N, Žunić D. Climate of the vineyard zones and the associated vine varieties of Yugoslavia. J AgricSci (Belgrade) 2000;45:29-35. doi:

    • Crossref
    • Export Citation
  • 24. U.S. Environmental Protection Agency (US EPA). Method 3050b; Acid Digestion of Sediments, Sludges, and Soils. Washington (DC): U.S. EPA; 1996.

  • 25. U.S. Environmental Protection Agency (US EPA). Method 200.7; Trace Elements in Water, Solids and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-OES. Washington (DC): U.S. EPA; 2001.

  • 26. SRPS EN ISO 11885:2011 - Water quality - Determination of selected elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). Belgrade: Institute for Standardization of Serbia; 2011.

  • 27. SRPS EN ISO 11969:2009 - Water quality - Determination of arsenic - Atomic absorption spectrometric method (hydride technique). Belgrade: Institute for Standardization of Serbia; 2009

  • 28. EN 14780:2011 - Solid biofuels - Methods for sample preparation. Brussels: European Standardization Organizations; 2011.

  • 29. EN 14775:2011 - Solid biofuels - Determination of ash content. Brussels: European Standardization Organizations; 2011.

  • 30. ISO 1171:2010 - Solid mineral fuels - Determination of ash. Geneva: International Organization for Standardization; 2010.

  • 31. Dare P, Gifford H, Hooper JR, Clemens HA, Damiano FL, Gong D, Matheson WT. Combustion performance of biomass residue and purpose grown species. Biomass Bioenerg 2001;21:277-87. doi:

    • Crossref
    • Export Citation
  • 32. EN 14918:2009 - Solid biofuels - Determination of calorific value. Brussels: European Standardization Organizations; 2009.

  • 33. SRPS EN 15104:2012 - Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen - Instrumental methods. Belgrade, Institute for Standardization of Serbia; 2012.

  • 34. Uredba o programu sistemskog praćenja kvaliteta zemljišta, indikatorima za ocenu rizika od degradacije zemljišta i metodologiji za izradu remedijacionih programa.[Regulation on a program of systematic monitoring of soil quality, indicators for assessing the risk of soil degradation and methodology for development of remediation programs, in Serbian]. Službeni glasnik RS 88/2010.

  • 35. Crnković MD. Analiza uticaja prisutnih teških metala I policikličnih aromatičnih ugljovodonika na kvalitet zemljišta u Beogradu [Analysis of the impact of present trace metals and polycyclic aromatic hydrocarbons on the soil quality in Belgrade, in Serbian]. [MSc thesis]. Belgrade: University of Belgrade, Faculty of Technology and Metallurgy; 2005.

  • 36. Mertens J, Vervaeke P, De Schrijver A, Luyssaert S. Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 2004;326:209-15. doi:

    • Crossref
    • Export Citation
  • 37. Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 2004;131:485-94. doi:

    • Crossref
    • Export Citation
  • 38. Sebastiani L, Scebba F, Tognetti R. Heavy metal accumulation and growth responses in poplar clones Eridano (Populusdeltoides ˟ maximowiczii) and I-214 (P. ˟ euramericana) exposed to industrial waste. Environ Exp Bot 2004;52:79-88. doi:

    • Crossref
    • Export Citation
  • 39. Laureysens I, Pellis A, Willems J, Ceulemans R. Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass Bioenerg 2005;29:10-21. doi:

    • Crossref
    • Export Citation
  • 40. Yang X, Feng Y, He Z, StoffellaPJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 2005;18:339-53. doi:

    • Crossref
    • Export Citation
  • 41. Brunner I, Luster J, Günthardt-Goerg MS, Frey B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 2008;152:559-68. doi:

    • Crossref
    • Export Citation
  • 42. Wang Z, MacFarlane WD. Evaluating the biomass production of coppiced willow and poplar clones in Michigan, USA, over multiple rotations and different growing conditions. Biomass Bioenerg 2012:46:380-8. doi:

    • Crossref
    • Export Citation
  • 43. Kfayatullah Q, Tahir Shah M, Arfan M. Biogeochemical and environmental study of the chromite-rich ultramafic terrain of Malakand area, Pakistan. Environ Geol 2001;40:1482-6. doi:

    • Crossref
    • Export Citation
  • 44. Freitas H, Prasad MNV, Pratas J. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulationrelevance to the management of mine environment. Chemosphere 2004;54:1625-42. doi:

    • Crossref
    • Export Citation
  • 45. Arslan H, Güleryüz G, Leblebici Z, Kırmızı S, Aksoy A. Verbascum bombyciferum Boiss. (Scrophulariaceae) as possible bio-indicator for the assessment of heavy metals in the environment of Bursa, Turkey. Environ Monit Assess 2010;163:1105-13. doi 10.1007/s10661-009-0820-1

  • 46. Antonkiewicz J, Kołodziej B, Bielińska E. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ Sci Pollut Res Int 2016;23:9505-17. doi:

    • Crossref
    • Export Citation
  • 47. Narodoslawsky M, Obernberger I. From waste to raw material - the route from biomass to wood ash for cadmium and other heavy metals. J Hazard Mater 1996:50:157-68. doi:

    • Crossref
    • Export Citation
OPEN ACCESS

Journal + Issues

All articles are published under the CC-BY licence.

Search